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Abstract

A framework is introduced allowing to apply nonparametric quantile regression
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quantile regression is combined with extreme value theory. The abilities of the pro-
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1 Introduction

In bank regulation, the effectiveness of capital requirements in preventing funding short-

falls rests upon the estimation accuracy of market risk measures, the most widely used

of which is Value at Risk (VaR). According to the Market Risk Amendment to the Basel

II Capital Accord of 2004, issued by the Bank for International Settlements, VaR is to be

calculated daily, using a ’99th percentile, one-tailed confidence interval’.

Not only against the background of the financial turbulences during the crisis 2007-2009,

there is a practical need for VaR models that are rich enough to capture the dynamics of

quickly changing market environments, while being parsimonious at the same time in

order to avoid overfitting. In this context, kernel-based quantile regression is a natural

choice. Being fully nonparametric, the approach does not require any structural assump-

tions, neither on the form of the VaR function nor on the shape of the loss distribution.

Furthermore, the primary interest is to predict quantiles accurately, not to estimate struc-

tural parameters, so that we do not lose interpretability by employing nonparametric

estimation methods.

Until now, however, nonparametric quantile regression has not been widely used in risk

management practice. One possible reason is that precisely because no structure is im-

posed on the regression function, the speed of convergence is slower than in parametric

regression settings, and generally more observations are needed for accurate estimation.

Therefore, when considering nonparametric quantile regression for VaR prediction, one

has to address the problem of data sparseness at the tails of the loss distribution, which

gets more severe when considering quantiles corresponding to extreme probabilities.

This paper proposes a framework allowing to operationalize nonparametric quantile re-

gression as a VaR estimation tool for both moderate and extreme probabilities. We in-

clude only past returns as regressor, which is sufficient, as a maximum of information

can be exploited and any kinds of nonlinearities are captured within the modelling ap-

proach. In addition, the model is simple, overfitting is avoided and problems arising from

limited observations are minimized. A double kernel-type estimator is used to smooth

distortions. Additionally, monotonization by rearrangement is applied at the bound-

ary of the estimated function. Finally, in order to predict VaR corresponding to extreme
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probability levels (such as 0.1%), the peaks over threshold method is incorporated and

applied to the standardized nonparametric quantile residuals, resulting in an estimator

that combines nonparametric quantile regression and extreme value theory (EVT).

Several studies have compared the forecast performances of different VaR models, see,

among others, Kuester et al. (2006), Manganelli and Engle (2001) and Nieto and Ruiz

(2008). They take a broad variety of models into account, but nonparametric quantile

regression as a tool for VaR estimation is rarely included. There are three exceptions we

are aware of: Cai and Wang (2008) suggest to estimate VaR and Expected Shortfall using

a new nonparametric VaR estimator, combining the Weighted Nadaraya Watson (WNW)

estimator of Cai (2002) and the Double Kernel Local Linear (DKLL) estimator of Yu and

Jones (1998). In the empirical section, however, only 5% quantile curves are estimated and

no forecasts are computed. Chen and Tang (2005) investigate nonparametric VaR estima-

tion, when no regressors are present. Taylor (2008) proposes to combine double kernel

quantile regression with exponential smoothing of the dependent variable in the time do-

main. 1% and 99% VaRs are predicted from the model along with some benchmarks, but

extreme quantiles are not considered. Although the Basel Committee on Banking Super-

vision asks banks to report VaR for a 10-day holding period, we focus on one-day-ahead

forecasts, which is in line with the literature.

In contrast to the studies already available in the literature, we present a method that al-

lows to nonparametrically estimate VaR corresponding to any probability that might be

of practical interest. We estimate, predict and backtest 1% and 0.1% VaRs for four sets of

index returns and a simulated time series. Our focus is on gains to loosening assumptions

in comparison to existing VaR models. Therefore, in the empirical application, we choose

to benchmark our model against the most flexible parametric VaR models, the Condi-

tional Autoregressive Value at Risk (CAViaR) models of Engle and Manganelli (2004).

They allow to set up different linear and nonlinear specifications, including the lagged

VaR estimate as a regressor, and they do not rely on distributional assumptions.

We find that although the CAViaR models obtain almost perfect in-sample fits in the case

of 1% VaR, the Double Kernel Local Linear (DKLL) estimator of Yu and Jones (1998) often

outperforms them in terms of out-of-sample backtesting results, especially when the es-

timation period is short relative to the forecasting period. Results are promising for 0.1%
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VaR as well. The superiority of the EVT-refined DKLL estimator over the plain DKLL

estimator is shown in a small simulation study. It turns out that, especially when the

estimation window is small relative to the forecasting period, the extreme value theory-

refined nonparametric model predicts extreme VaRs very accurately.

Section 2 outlines the basic setup of conditional quantile models, before describing CAViaR

models. The Double Kernel Local Linear estimator used in the following is presented in

Section 3. Furthermore, the incorporation of extreme value theory into the model is ex-

plained. The investigated data sets and the backtesting method are summarized in Sec-

tion 4. The empirical results on 1% and 0.1% VaR estimation are stated in Section 5. In

Section 6, the performance of the EVT-refined nonparametric model is further assessed

via a small simulation study. Section 7 concludes.

2 Quantile regression approaches to VaR estimation

2.1 Conditional quantiles

Let {Yt}nt=1 be a strictly stationary time series of portfolio returns and let Xt be a d-

dimensional vector of regressors. The pth conditional quantile of Yt, denoted by qp(x), is

defined as

qp(x) = inf {y ∈ R : F (y|x) ≥ p} ≡ F−1(p|x), (2.1)

or, equivalently, as the argument that solves

min
qp(x)

E
[(
p− I(Yt < q(Xt))

)(
Yt − q(Xt)

)
|Xt = x

]
, (2.2)

where I(A) denotes the indicator function on some set A. Both formulations are widely

used in the literature. In the seminal paper by Koenker and Bassett (1978) a sample equiv-

alent of (2.2) where q(Xt) = X′tβ, also including the special case Xt = 1, is established. β

is a d-dimensional vector of unknown parameters. The linear quantile model is extended

to conditionally heteroskedastic processes in Koenker and Zhao (1996). In Engle and

Manganelli (2004) conditional autoregressive quantile functions are estimated using (2.2)

with q(Xt) possibly being nonlinear in parameters, see Section 2.2 for some examples.

In a number of papers, localized kernel versions of (2.2) are estimated, leading to a non-
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parametric fit: Yu and Jones (1997) compare the goodness of fit of local constant and local

linear models. On the other hand, Cai (2002), Yu and Jones (1998), Cai and Wang (2008)

propose nonparametric methods to estimate the distribution function in (2.1), which, in a

second step, is inverted. Section 3.1 contains more details on these approaches. Wu et al.

(2007) model (2.1) without regressors, and Chernozhukov and Umantsev (2001) opera-

tionalize a linear version of (2.1).

Following the convention of expressing VaR as a positive number, it is defined as

V aRtp(·) = −qtp(·),

where qtp is the quantile of the return distribution corresponding to probability p, at time

t. V aRtp denotes a generic VaR measure which may depend on x and/or a vector of

parameters β. To simplify notation, index t is suppressed in contexts where it does not

cause confusion.

2.2 Conditional Autoregressive VaR (CAViaR) Models

The class of Conditional Autoregressive Value at Risk (CAViaR) models, first introduced

by Engle and Manganelli (2004), is used to benchmark the forecast performance of the

nonparametric VaR estimators considered here. Several comparison studies have done

so, for example Kuester et al. (2006) or Taylor (2008). CAViaR models are dynamic VaR

models describing the quantile of a random variable at time t, e.g. the return on a finan-

cial portfolio, as possibly nonlinear function of its own lags and, in addition, of a vector

of observable variables, Xt:

V aRtp(β) = β0 +

r1∑
i=1

βiV aR
t−i
p (β) +

r2∑
j=1

βjf(Xt−j),

where d = r1 + r2 + 1 is the dimension of β, the parameter vector that solves

min
β

1

n

n∑
t=1

[
p− I

(
Yt < −V aRtp(β)

)]
(Yt + V aRtp(β)). (2.3)

A straightforward choice for Xt is lagged returns. Following the original article, the spec-

ifications used here include the first lagged value of V aRp(·) and the first lagged value of
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Yt, therefore Xt = Yt−1.

Well-known stylized facts on asset returns are, firstly, that they exhibit volatility cluster-

ing. It carries over to VaR: if high variation is observed in returns of the recent past, it

is likely to continue, and risk is therefore high as well. Secondly, quantiles (or volatility)

might react differently according to the sign of past returns. This possibility is captured

by the Asymmetric Slope specification

V aRtp(β) = β1 + β2V aR
t−1
p (β) + β3(Yt−1)

+ + β4(Yt−1)
−, (2.4)

where (x)+ = max(x, 0) and (x)− = −min(x, 0), but not by the Indirect GARCH(1,1)

specification

V aRtp(β) =
√
β1 + β2(V aR

t−1
p )2(β) + β3Y 2

t−1. (2.5)

On the other hand, the Asymmetric Slope CAViaR imposes a piecewise linear struc-

ture on VaR, although the true functional form might be nonlinear. As pointed out in

Kuester et al. (2006), financial returns may also have an autoregressive (AR) mean, which

is neglected by the CAViaR specifications, which artificially set the mean return equal to

zero. For these reasons we combine the positive features of the above, by allowing for

nonlinearity and asymmetric effects of past returns, and additionally incorporate an AR

mean, by introducing an alternative specification, called Indirect Autoregressive Thresh-

old GARCH (AR-TGARCH(1,1)) CAViaR:

V aRtp(β) = β1Yt−1 +
(
β2 + β3(V aR

t−1
p )2(β) + β4Y

2
t−1 + β5(Yt−1)

2I(Yt−1 < 0)
) 1

2 , (2.6)

Including the AR term introduces the possibility for a nonzero autoregressive mean,

asymmetry is present if β5 6= 0 and the square root allows for a nonlinear functional

form.

For estimating the parameters of the CAViaR models, an algorithm similar to the one

proposed in the original paper is applied, see Engle and Manganelli (2004). A grid search

is conducted by generating a large number of random vectors, the dimension of which

corresponds to the number of model parameters. The five vectors which lead to the low-

est values of the objective function (2.3) are selected and fed into a simplex optimization
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algorithm. The final parameter vector is chosen to be the one minimizing (2.3). Our new

AR-TGARCH specification fits into this procedure.

3 Nonparametric quantile regression with refinements from ex-

treme value theory

3.1 Double Kernel Local Linear VaR regression

In general, estimating nonparametric models requires large amounts of data. Since VaR

corresponds to a quantile at the tail of the return distribution, suitable nonparametric

quantile estimators should be able to deal with areas where data are sparse. Therefore,

from the variety of nonparametric quantile estimators, the Double Kernel Local Linear

(DKLL) estimator of Yu and Jones (1998) is chosen for the VaR application, because it

localize the data in both x- and y-direction, which leads to smoother estimates. For more

details, regularity assumptions and asymptotic properties, see the original article by Yu

and Jones (1998). The Weighted Double Kernel Local Linear estimator of Cai and Wang

(2008), a Nadaraya Watson type estimator, forms an alternative to the DKLL estimator.

In a small simulation study, which is not reported here, the DKLL estimator performed

slightly better at design points at the boundary of the support of the data. Therefore, we

chose it for our application.

For notational convenience, observations {(Xt, Yt)}nt=1 are assumed to be drawn from

underlying bivariate distribution F (x, y) with density f(x, y). The extension to the mul-

tivariate case is straightforward, but requires more tedious notation. The estimator is de-

fined as inverse of a conditional distribution function as in (2.1). Throughout this section,

quantiles of return distributions are discussed, so that VaR corresponds to the negative

quantile.

A generic nonparametric method of estimating a conditional distribution F (y|x) is

F̌ (y|x) =

n∑
t=1

wt(x)I(Yt ≤ y), (3.1)

where I(·) is again an indicator function and the weights wt(x) are positive and sum

up to one. Choosing equal weights w = 1/n yields the empirical distribution function.
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Using instead a kernel function with bandwidth parameter h, in the following sometimes

abbreviated by Kh(·) = 1
hK(·/h), which is often chosen to be a symmetric probability

density function, results in the Nadaraya Watson estimator of a conditional distribution

F̌NW (y|x) =

n∑
t=1

Kh(x−Xt)∑n
t=1Kh(x−Xt)︸ ︷︷ ︸

wt(x)

I(Yt ≤ y), (3.2)

see for example Li and Racine (2007). It attaches a smooth set of weights to the data, and

is known to be monotone increasing and bounded between zero and one. However, it

suffers from boundary distortion, as shown by Fan and Gijbels (1996). They advocate the

use of local polynomial estimators, the simplest of which is the local linear estimator.

One way to reduce distortions that arise due to a limited number of observations is to

smooth not only the observations of the regressor variable Xt, but also the observations

of the dependent variable Yt. This requires the introduction of a second symmetric kernel

Wh2(·). Its kernel distribution, which is defined by

∫ y

−∞
Wh2(Yt − u)du = Ω

(
y − Yt
h2

)
, (3.3)

with h2 being the bandwidth parameter, can be viewed as a smooth, differentiable ver-

sion of the indicator function.

As a next step, the conditional distribution value of y is approximated by a linear Taylor

expansion around x. The estimate F̃ (y|x) = β̂0 is obtained from

(β̂0, β̂1) = arg min
β0,β1

n∑
t=1

(
Ω

(
y − Yt
h2

)
− β0 − β1(Xt − x)

)2

Kh1 (x−Xt) , (3.4)

where h1 > h2. Solving for β̂0 yields the explicit expression for the conditional distribu-

tion function estimator,

F̃ (y|x) =
n∑
t=1

Kh1 (x−Xt) [S2 − (x−Xt)S1]∑n
t=1Kh1 (x−Xt) [S2 − (x−Xt)S1]︸ ︷︷ ︸

wt(x)

Ω

(
y − Yt
h2

)
, (3.5)



3 NONPARAMETRIC QUANTILE REGRESSION WITH REFINEMENTS FROM EXTREME VALUE THEORY8

where

Sl =
n∑
i=1

K

(
x−Xt

h1

)
(x−Xi)

l, l = 1, 2.

(3.5) is a version of (3.1) where the kernel distribution function Ω(·) in (3.3) replaces the

indicator. The DKLL quantile estimator q̃p(x), the sample analogue to (2.1), is then de-

fined by

q̃p(x) = inf
{
y ∈ < : F̃ (y|x) ≥ p

}
≡ F̃−1(p|x). (3.6)

with F̃ from (3.5). In finite samples, F̃ (y|x) might not always be monotonically increas-

ing. In such cases, however, the inverse is not defined. Yu and Jones (1998) suggest the

following implementation scheme: For q̃1/2(x), any value satisfying (3.6) is chosen; for

p > 1/2, the largest, and for p < 1/2, the smallest solutions to (3.6) are taken as quantile

estimates.

In this paper, a stronger procedure is applied, avoiding to delete estimated values. Cher-

nozhukov et al. (2009) show that any nonmonotone estimate of a monotone function can

be improved in terms of common metrics, such as the Lp-norm, by simple rearranging.

In an earlier work, Dette et al. (2006) propose a similar method of smoothed rearrange-

ments. For the case of a monotone increasing (decreasing) function, the point estimates

are sorted in ascending (descending) order. Making use of these theoretical results, non-

monotone distribution estimates are rearranged before inverting. In the present context

of monotonizing the estimated distribution function, a further effect is that quantile cross-

ing is circumvented. Estimated values greater than one are discarded.

3.2 Refining nonparametric quantile regression with extreme value theory

For extreme quantiles, usually very few data points are available, so that fully nonpara-

metric regression does not yield reliable estimates. Extreme value theory (EVT) is an

alternative to model extreme quantiles. In the following a method of incorporating ex-

treme value theory into CAViaR models, which was introduced by Manganelli and Engle

(2001), is adapted to obtain 0.1% VaR estimates from a nonparametric model.
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The strategy is to first calculate the standardized quantile residuals,

ε̂tp2
q̂tp2

=
Yt − q̂tp2
q̂tp2

=
Yt
q̂tp2
− 1. (3.7)

p denotes the (very low) probability of interest, and p2 corresponds to a moderately low

probability for which the quantile can be estimated nonparametrically, for example p2 =

0.01 or p2 = 0.05. McNeil and Frey (2000) employ a similar technique to estimate 1% VaR

from a GARCH residual series. An EVT-augmented nonparametric kernel distribution

estimator is also considered by MacDonald et al. (2011), who show consistency of their

method via Bayesian inference.

Reformulating the definition of the pth quantile of portfolio returns in terms of the p2th

quantile yields

P [Yt < qtp] = P
[
Yt < qtp2 − q

t
p2 + qtp

]
= P

[
Yt
qtp2
− 1 >

qtp
qtp2
− 1

]
= p.

The inequality sign is switched assuming that qtp2 is a negative number. Let

zp ≡
qtp
qtp2
− 1

denote the (1 − p)th quantile of the standardized residuals. It is then estimated by the

peaks over threshold (POT) method, though it can be estimated by other methods, such

as the Hill estimator, as well. A number of applications employ the POT method to fore-

cast extreme quantiles; for a selection of applications and an investigation of its finite

sample properties see El-Arouia and Diebolt (2002). An estimate for the pth return quan-

tile can be expressed by means of ẑp and q̂tp2 :

q̂tp
q̂tp2
− 1 = ẑp ⇔ q̂tp = q̂tp2(ẑp + 1). (3.8)

Again, V̂ aR
t

p = −q̂tp. In the remainder of this section, the underlying extreme value argu-

ments, which is used to obtain ẑp in (3.8), is discussed very briefly, following Embrechts

et al. (1997).
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Large observations which exceed a high threshold can be approximated reasonably well

by the Generalized Pareto Distribution (GPD) with distribution function

Gξ,β(x) =

 −(1 + ξx/β)1/ξ for ξ 6= 0

1− ex/β for ξ = 0
(3.9)

with shape parameter ξ and scale parameter β > 0. The support is x ≥ 0 when ξ ≥ 0

and 0 ≤ x ≤ −β
ξ if ξ < 0. The parameters can be consistently estimated if the threshold

exceedances are independent, regardless of the true underlying distribution, see Smith

(1987). In general, given a high threshold u and a random variable Y , the probability of

Y exceeding u at most by x is given by

Fu(x) = P [Y − u ≤ x|Y > u] =
F (x+ u)− F (u)

1− F (u)
. (3.10)

Balkema and de Haan (1974) and Pickands (1975) show that for a large class of distribu-

tion functions F it is possible to find a positive function β(u) such that

lim
u→y0

sup
0≤x<y0−u

∣∣Fu(x)−Gξ,β(u)(x)
∣∣ = 0, (3.11)

with y0 corresponding to the right endpoint of F . Rearranging (3.10) and using Fu(·) ≈

Gξ,β(·), it holds that

1− F (u+ x) ≈ [1− F (u)][1−Gξ,β(x)].

Then, 1−Gξ,β(x) can be obtained by estimating the GPD parameters by maximum like-

lihood. Let Nu denote the number of exceedances over threshold u. A common way of

estimating S(u) := 1−F (u) is to use the empirical distribution function Nu
n . Substituting

the estimates,

̂S(u+ x) =
Nu

n

(
1 + ξ̂

(
x

β̂

))− 1

ξ̂

. (3.12)

The quantile can be estimated by inverting (3.12), employing a change of variables y =

u+ x and fixing the distribution value at the probability of interest: F (y) = p. Therefore,
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the quantile estimator q̂p is obtained from

1− p =
Nu

n

(
1 + ξ̂

(
y − u
β̂

))− 1

ξ̂

⇔ q̂p = u+

[(
(1− p) n

Nu

)−ξ̂
− 1

]
· β̂
ξ̂
. (3.13)

In general, extreme value methods require the underlying data to be i.i.d. Although com-

puting standardized residuals in (3.7) should remove most of the dynamics, one cannot

eliminate the possiblitity of remaining autocorrelation. However, under some conditions

on the dependence structure (see e.g. Drees (2003) for details), the relationship between

the limiting distributions of the maxima of a dependent but strictly stationary sequence,

(Yt)t∈N say, and a white noise sequence (Ỹt)t∈N with the same distribution function F

may be described by the so-called extremal index θ ∈ (0, 1]. If the distribution of normal-

ized threshold exceedances in the sequence (Ỹt) converges to an extreme value distribu-

tion G(x), as in (3.11), then it can be shown that the equally normalized exceedances of

(Yt)t∈N converge to Gθ(x), see Embrechts et al. (1997). Thus, the same limiting extreme

value distribution may be used, while changing only the normalization parameters.

Intuitively, if our sequence of standardized residuals possesses an extremal index which

is < 1, then its extremal behavior is asymptotically the same as that of a shorter white

noise sequence with the same distribution. However, it might still be interesting to find

out about the extent of deviation from white noise for a given data set. The extremal

index may be estimated by the so-called Runs Method where θ is computed as the condi-

tional probability that a threshold exceedance is followed by a run of r non-exceedances.

The idea is that periods in between clusters of exceedances are longer than periods be-

tween independent exceedances (for details see Embrechts et al. (1997), Chapter 8). The

higher the clustering tendency, the fewer runs will be present. The estimator is

θ̂ =

∑n−r
t=1 I(At)∑n

t=1 I(Yt > u)
. (3.14)

where I(·) is again the indicator function and

At = {Yt > u, Yt+1 ≤ u, ..., Yt+r ≤ u} (3.15)
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Drees (2003) shows that a wide variety of financial time series, including ARMA and

ARCH processes, may be estimated by the POT maximum likelihood estimator which

we use here. He finds that the only difference to i.i.d. data is an increased variance of the

quantile estimator, but this drawback does not affect our results, as our goal is forecasting

accuracy, which is checked via backtesting.

4 Data and backtesting method

We analyze four data sets of daily index returns, DAX, FTSE 100 (FTSE), EuroSTOXX 50

(EuroSTOXX) and S&P 500 (S&P). The longest available time series of each are used to

compute in-sample fits. The common end date of the in-sample period is 28/02/2003.

We predict VaR for the subsequent 1000 days, until the end of 2006 (29/12/2006). As

a second step, we take the same forecast period, but additionally include 300 days to

check whether model performances worsen when the data contains the beginning of the

financial crisis. The 1300-day forecast period ends on 22/02/2008. Table 4 summarizes

some features of the data.

DAX FTSE EuroSTOXX S&P
start date 03/10/1966 03/01/1984 02/01/1987 31/07/1970
end in-sample period 28/02/2003 28/02/2003 28/02/2003 28/02/2003
no. of observations 9500 4998 4215 8500
mean 0.020 0.026 0.021 0.028
median 0.000 0.020 0.057 0.007
0.5% quantile -4.107 -3.470 -4.924 -3.009
99.5% quantile 3.686 3.258 4.157 3.239
skewness -0.422 -0.794 -0.326 -1.468
kurtosis 11.158 13.571 8.414 39.075

Table 4.1: Data summary for the time series used in the long estimation period.

The reason for using a rather long estimation period relative to the forecast horizon, is

that our aim is to assess and compare the quality of the nonparametric model in captur-

ing market risk, using as much information as possible. We are aware that in real life

risk management, available time series are typically much shorter. Therefore, in Section

5.2.2, we additionally estimate our models using only the last 1000 data points, from

30/04/1999 to 28/02/2003 and forecast 1% VaRs for the subsequent 200 and 1000 days.
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Realizations of quantiles cannot be observed. Therefore, backtesting of the models is

carried out using the dynamic quantile (DQ) out-of-sample test developed in Engle and

Manganelli (2004) to test and compare the performance of VaR models. From the variety

of alternatives, we choose this particular test, firstly because it is the standard test to com-

pare CAViaR and other models, and secondly, because it is based on a moment condition

rather than an augmented regression, where VaR excess indicators are modelled as func-

tion of some information set. Escanciano and Olmo (2010) show that many popular VaR

backtests do not take estimation risk into account, which may lead to incorrect limiting

distributions of the test statistic. However, in the context of Theorem 2 in their paper,

they also point out that the out-of-sample DQ test does not suffer from this drawback.

Define the binary variable

Hitt ≡ I(Yt < −V aRtp)− p.

If the chosen model is correct,

E[Hitt|Ωt] = 0, (4.1)

where Ωt is any information known up to time t. Thus, VaR is estimated correctly, if in-

dependently for each day of the forecasting period, the probability of exceeding it equals

p. Note that this also implies that Hitt is uncorrelated with its own lagged values. Let Zt

denote a K-vector of variables potentially related to Hitt, and let Z denote the (N ×K)-

matrix stacking the values of Zt, where N is the number of observations in the forecast

period. Then, the moment condition in (4.1) can be checked using the test statistic

DQ =
Hit′Z(Z′Z)−1Z′Hit

p(1− p)
, (4.2)

where Hit is a vector containing all values of Hitt. Under the null hypothesis that (4.1)

holds, DQ is asymptotically χ2 distributed with K degrees of freedom. In analogy to En-

gle and Manganelli (2004), Kuester et al. (2006) and Taylor (2008), we include a constant,

four lagged values of Hitt and the current VaR estimate in the information set.

It can be seen immediately that for our information set, the DQ test statistic requires at

least one out-of-sample VaR exceedance in order to be defined. Otherwise, the lagged
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values of Hitt would cause multicollinearity in the matrix Z. However, when consider-

ing extreme VaR, as we do in Section 5.3, it might well be that there are no exceedances

within the forecasting period (note that the correct number of exceedances for 1000 fore-

casts of 0.1% VaR is 1). Therefore, in order to be able to compare the different models

while taking the possibility of no exceedances into account, we employ the test proposed

by Kupiec (1995) which is an unconditional test of the correctness of the achieved share

of VaR exceedances. Define the indicator variable

It ≡ I(Yt < −V aRtp).

The idea of the Kupiec test is to check whether E[It] = p, in which case the number of

exceedances

exN =
n+N∑
t=n+1

It

has a binomial distribution with parameters N and p. Under the null hypothesis of cor-

rect coverage, the corresponding likelihood ratio statistic

LRKup = 2 log

[(
1− exN

N

)N−exN (exN
N

)exN]
− 2 log

[
(1− p)N−exNpexN

]
.

is asymptotically χ2 distributed with one degree of freedom.

5 Application to stock index returns

5.1 Monotonicity of quantile curves

When forecasting from a nonparametric model, one has to balance two effects occurring

at the boundary areas: The support from which predictions of the dependent variable

can be computed is limited to the range in which the estimated function is located. This

means that for outlying lagged returns, which are not in the support of the estimated

curve, no forecasts for VaR exist. On the other hand, often only few data points are avail-

able at boundary areas, so that outliers have more influence and the resulting curve may

show distortions. Therefore, one has to decide carefully about the range of the grid at
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which the function is evaluated, balancing possible distortions against a limited range of

regressor values to compute forecasts from.

We estimate the time-varying conditional 1% VaRs of DAX, EuroSTOXX, S&P and FTSE

using the DKLL estimator. Due to its double smoothing property, distortions are eased

and quantile curves are smoother. Additionally, we make use of the monotonization

method proposed by Chernozhukov et al. (2009). Whenever curves are not monotoni-

cally decreasing on the left of the minimum and monotonically increasing on the right,

estimated values are rearranged in descending and ascending order, respectively. To il-

lustrate possible changes in the in-sample fit, Figure 5.1 shows the original as well as the

rearranged 1% VaR curves of DAX and EuroSTOXX. Both curves cover 99% of the data.
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Figure 5.1: Original and rearranged DKLL estimates of 1% conditional DAX VaR curve
(upper panel) EuroSTOXX VaR curve (lower panel).
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Table 5.1 compares backtesting results on original and rearranged DKLL fits, on a forecast

horizon of 1000 days. In-sample and out-of-sample coverages are aimed to be as close

as possible to the underlying probability, in this case 1%. The P -value of the LR test

described in Section 4 expresses the highest significance level at which the variables in the

information set are jointly significant. Therefore, a larger P -value indicates that the null

hypothesis of independent VaR exceedances is more likely not to be rejected, suggesting

that a model is more adequate

DAX FTSE
DKLL orig. DKLL rearr. DKLL orig. DKLL rearr.

in-sample (%) 0.78 0.78 0.94 0.95
out-of-sample (%) 1.00 1.00 0.40 0.50
DQ P -value 0.182 0.182 0.614 0.830

EuroSTOXX S&P500
DKLL orig. DKLL rearr. DKLL orig. DKLL rearr.

in-sample (%) 0.81 0.81 0.97 0.97
out-of-sample (%) 0.50 0.50 0.30 0.30
DQ P -value 0.859 0.859 0.544 0.544

Table 5.1: DQ test results for original and rearranged DKLL models as well as in-sample
and out-of sample share of VaR exceedances (in percent). The forecast period is 1000
observations.

The theoretical results from Chernozhukov et al. (2009), that rearranging weakly im-

proves estimation, are confirmed by our empirical results: Whenever values in the columns

are different, they are superior for the rearranged estimates. In-sample and out-of-sample

coverages are closer to 1% in case of the FTSE return series. Furthermore, the LR test P -

value substantially increases, indicating that the null hypothesis of the LR test is ’further

away’ from rejection than in the case of the original DKLL model. Whenever we mention

results for the DKLL estimator in the following, it refers to the rearranged version.

5.2 Comparing 1% VaR predictions

5.2.1 Long estimation period

Table 5.2 lists backtest results of the CAViaR models and the rearranged DKLL estimates

which are obtained from the large data set data set described in Table 4. Generally, the
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in-sample exceedance shares achieved by all three CAViaR specifications are very close

to the underlying probability 1%. In contrast, the DKLL estimator has a slight tendency

to overestimate VaR, leading to in-sample coverages below 1%. The news impact curves

shown in Figure 5.2 reveal that the AR-TGARCH CAViaR specification resembles the

nonparametric VaR estimate better than the other two models.
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Figure 5.2: News impact curves, i.e. reactions of S&P VaR to different magnitudes of
lagged returns (’news’), of TGARCH(1,1) CAViaR (lower curve in the upper panel) to-
gether with DKLL estimate (upper curve in the upper panel), of Asymmetric Slope and
GARCH(1,1) CAViaR.

In terms of out-of-sample forecasting, on the other hand, results differ among the four in-

dices. In predicting DAX VaR, the CAViaR models perform quiete poorly on both forecast

horizons. Out-of-sample coverages are too high, and the DQ test P -values raise doubt

that the models are able to generate conditionally independent VaR exceedances and
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correct coverage. In contrast, the DKLL estimate achieves more accurate out-of-sample

exceedance rates in predicting VaR over both 1000 and 1300 days, and the test results

suggest that the model is appropriate at least for the shorter forecast horizon.

Asymm. Slope GARCH AR-TGARCH DKLL
DAX

in-sample 1.01 1.01 1.04 0.78
out-of-sample (1000) 1.50 1.50 1.50 1.00
out-of-sample (1300) 1.54 1.54 1.61 1.07
DQ P -value (1000) 0.054∗ 0.011∗∗ 0.054∗ 0.182
DQ P -value (1300) 0.043∗∗ 0.009∗∗∗ 0.039∗∗ 0.040∗∗

FTSE
in-sample 1.02 1.00 1.00 0.94
out-of-sample (1000) 0.60 0.60 0.60 0.50
out-of-sample (1300) 1.08 1.16 1.08 1.00
DQ P -value (1000) 0.005∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.830
DQ P -value (1300) 0.040∗∗ 0.104 0.059∗ 0.011∗∗

EuroSTOXX
in-sample 1.04 0.99 0.99 0.81
out-of-sample (1000) 0.70 0.80 0.80 0.50
out-of-sample (1300) 0.76 0.92 0.92 0.62
DQ P -value (1000) 0.970 0.058∗ 0.057∗ 0.859
DQ P -value (1300) 0.980 0.015∗∗ 0.015∗∗ 0.031∗∗

S&P
in-sample 1.01 1.00 0.97 0.97
out-of-sample (1000) 0.30 0.30 0.30 0.30
out-of-sample (1300) 0.92 1.00 0.69 1.15
DQ P -value (1000) 0.547 0.285 0.547 0.544
DQ P -value (1300) 0.042∗∗ 0.000∗∗∗ 0.079∗ 0.008∗∗∗

Table 5.2: Backtesting results for 1% VaR models. In-sample and out-of-sample ex-
ceedance probabilities in %. Considered forecast horizons are 1000 and 1300 observa-
tions. Models which are rejected by the DQ test are marked with ∗ for rejection on 10%,
∗∗ on 5% and ∗∗∗ on 1% significance level.

In the case of FTSE VaR, results are mixed: The DKLL estimator overestimates VaR in the

short prediction period (coverage is 0.5%), where, however, it yields a good fit according

to the backtest. For 1300 forecasts, it achieves the correct coverage, but the DQ P -value

drops sharply. The CAViaR models, on the other hand, are strongly rejected in the short

horizon, but show a better performance in the longer one.

The picture for EuroSTOXX is somewhat similar to that of FTSE, except that the results

from the CAViaR models now differ more strongly among each other, and the Asymmet-

ric Slope CAViaR beats all the other models considered. The P -value obtained by the
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DKLL estimator again drops when moving from the short to the longer forecast horizon,

but it is still above the P -values of GARCH and AR-TGARCH CAViaR, which, on the

other hand, perform better in terms of out-of-sample coverages.

The results for S&P VaR show a different structure. Although all coverages within the

short prediction period are low, the DQ test indicates adequate out-of-sample fits. For

the extended horizon, all P -values drop, such that the GARCH CAViaR and the DKLL

models are even rejected at a 1% significance level. One possible reason is that the ad-

ditionally included observations exhibit some dynamics which are not well captured by

these models, leading to a clustering of VaR exceedances. Interestingly, the AR-TGARCH

is least affected by this effect.

The AR-TGARCH CAViaR model does not outperform the other two CAViaR models and

the DKLL model systematically, but its results are less varying: For both in-sample and

out-of-sample forecast horizons, its coverage and backtest results are often better than

the results of one of the two others. We attribute this finding to the fact that the model

combines the features of Asymmetric Slope and Indirect GARCH specification, and it is

therefore more universally applicable.

Summing up, the out-of-sample VaR prediction results produced by the fully nonpara-

metric DKLL estimator are satisfactory except for the extended forecast horizon in the

case of the S&P. The CAViaR models are strong competitors, however, they have the

drawback that it is not possible to detect one parameterization that systematically domi-

nates others. As it is often the case with parametric models, the question remains which

one to choose in practical applications. The DKLL model, on the other hand, outper-

forms at least one of the CAViaR models in most cases, and is therefore the most robust

alternative.

5.2.2 Short estimation period

In real life risk management, time series available for the estimation of VaR models are

rarely as long as the ones we investigate in the previous section. For this reason, we

repeat the estimation using only 1000 observations, i.e. roughly the last four years up to

28/02/2003, and forecast VaRs for both the subsequent 200 and 1000 days. Table 5.3 lists

the backtesting results.
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Asymm. Slope GARCH AR-TGARCH DKLL
DAX

in-sample 1.10 1.10 0.90 0.80
out-of-sample (200) 2.50 1.50 2.50 0.50
out-of-sample (1000) 0.70 0.80 0.80 0.10
DQ P -value (200) 0.409 0.839 0.410 0.967
DQ P -value (1000) 0.603 0.061∗ 0.671 0.195

FTSE
in-sample 1.00 1.00 1.10 0.70
out-of-sample (200) 1.00 1.00 1.00 0.50
out-of-sample (1000) 0.70 0.60 0.60 0.10
DQ P -value (200) 0.810 1.000 0.975 0.997
DQ P -value (1000) 0.020∗∗ 0.008∗∗∗ 0.007∗∗∗ 0.225

EuroSTOXX
in-sample 1.10 1.00 1.10 1.10
out-of-sample (200) 1.50 1.00 1.50 1.00
out-of-sample (1000) 0.40 0.40 0.50 0.20
DQ P -value (200) 0.985 1.000 0.992 1.000
DQ P -value (1000) 0.674 0.652 0.713 0.356

S&P
in-sample 1.00 1.00 1.10 0.90
out-of-sample (200) 1.00 0.50 1.00 0.50
out-of-sample (1000) 0.20 0.10 0.20 0.10
DQ P -value (200) 0.536 0.742 0.390 0.975
DQ P -value (1000) 0.206 0.110 0.210 0.212

Table 5.3: Backtesting results for 1% VaR models which are estimated using only 1000
observations. In-sample and out-of-sample exceedance probabilities in %. Considered
forecast horizons are 200 and 1000 observations. Models which are rejected by the DQ
test are marked with ∗ for rejection on 10%, ∗∗ on 5% and ∗∗∗ on 1% significance level.

The good performance of the DKLL estimator carries over to the short estimation period.

Although VaR estimates are again too conservative in particular for the longer forecasting

period, the null hypothesis of valid moment conditions tested by the DQ test is never

rejected even on a 10% significance level. The CAViaR models also overestimate VaR for

the subsequent 1000 observations, and additionally, they are rejected by the DQ test in

the case of FTSE. Based on these results, it can be said that the DKLL estimator is also

applicable when the estimation period is rather short, and keeps yielding reliable VaR

forecasts even for the distant future.
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5.3 Comparing extreme VaR predictions

Following the procedure described in Section 3.2, standardized residuals are computed

from the rearranged DKLL estimate and the time-varying 0.1% quantile of time series

Yt is calculated according to (3.8). The underlying ’moderate’ probability is chosen to

be 1%. Similarly, VaR estimates obtained from the EVT-augmented CAViaR models are

computed, following Manganelli and Engle (2001). As mentioned at the end of Section
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Figure 5.3: Autocorrelation functions of the standardized nonparametric residuals for the
four indices. The dashed lines are 95% confidence intervals.

3.2, the data should be checked for dependence before applying extreme value methods.

Figure 5.3 shows autocorrelation functions (ACFs) for the standardized residuals from

the nonparametric model, together with 95% confidence intervals. Although the magni-

tude of the autocorrelation is not very high, for some lags, the confidence intervals are

exceeded. Therefore, we carry out Ljung-Box tests on independence based on 20 lags,

the results of which imply significant autocorrelation on a 1% confidence level for all
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four considered models and all model specifications. Fitting simple AR models to the

standardized residuals, however, removes the autocorrelation entirely, see Table 5.3. The

corresponding results for the three CAViaR specifications are very similar, and thus, not

shown here. They are available upon request. Since McNeil et al. (2005) state that ARMA

processes with innovations drawn from fat-tailed distributions exhibit values of the ex-

tremal index θ < 1, we also estimate the extremal indices using the Runs Method (3.14)

described in Section 3.2 and report them in the last column of Table 5.3. The parameter r,

corresponding to the length of runs, was set to 30 for all three indices, after finding that

the estimated θ̂ was very robust with respect to plausible choices of r. As McNeil et al.

(2005) point out, the distribution of the maximum of n dependent data points with ex-

tremal index θ can be approximated by the associated i.i.d. series with nθ observations.

Given the large number of data points in all our samples, we conclude that the loss in

accuracy due to dependence in the standardized residuals is not too severe, so that we

can apply the proposed method to estimate the 0.1%-VaRs.

LB P -value LB P -value for AR residuals AR lag order θ̂

DAX 0.000 0.529 7 0.80
FTSE 0.000 0.203 9 0.91
EuroSTOXX 0.001 0.357 9 0.85
S&P 0.000 0.224 4 0.88

Table 5.4: The first column reports the outcomes (P -values) of the Ljung-Box (LB) test on
independence of the standardized residuals from the DKLL model. The null hypothesis
of independence is always rejected on a 1% confidence level. The second column con-
tains the LB test results after fitting an autoregressive (AR) model to the standardized
residuals. In all cases, the null hypothesis cannot be rejected. The selected lag order is
reported in the third column. The forth column contains estimates of the extremal index
θ.

Table 5.5 contains both in-sample and out-of-sample shares of 0.1% VaR exceedances for

the four considered models. Only the long estimation period is considered. However,

the simulation study in Section 6 contains a discussion of results from the nonparametric

model for extreme quantiles, based on a shorter space of time. Due to the occurrence of

no VaR exceedances within the prediction period, we use the Kupiec test instead of the

DQ test for backtesting. It checks the correctness of the achieved unconditional coverage

via a likelihood ratio approach, which is based on the Bernoulli likelihood, see Section 4.

In contrast to the outcomes of the 1% VaR analysis, in-sample VaR exceedance shares
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Asymm. Slope GARCH AR-TGARCH DKLL
DAX

in-sample 0.11 0.17 0.09 0.13
out-of-sample(1000) 0.00 0.00 0.00 0.10
out-of-sample(1300) 0.15 0.15 0.15 0.23
Kupiec P -value (1000) 0.157 0.157 0.157 1.000
Kupiec P -value (1300) 0.570 0.570 0.570 0.203

FTSE
in-sample 0.14 0.16 0.14 0.16
out-of-sample(1000) 0.10 0.20 0.10 0.10
out-of-sample(1300) 0.15 0.38 0.15 0.15
Kupiec P -value (1000) 1.000 0.379 1.000 1.000
Kupiec P -value (1300) 0.570 0.014∗∗ 0.570 0.570

EuroSTOXX
in-sample 0.19 0.26 0.31 0.24
out-of-sample(1000) 0.10 0.20 0.20 0.00
out-of-sample(1300) 0.23 0.31 0.31 0.15
Kupiec P -value (1000) 1.000 0.379 0.379 0.157
Kupiec P -value (1300) 0.203 0.058∗ 0.058∗ 0.570

S&P
in-sample 0.20 0.22 0.19 0.12
out-of-sample(1000) 0.10 0.00 0.00 0.00
out-of-sample(1300) 0.15 0.08 0.08 0.00
Kupiec P -value (1000) 1.000 0.157 0.157 0.157
Kupiec P -value (1300) 0.570 0.784 0.784 0.107

Table 5.5: Backtesting results for 0.1% VaR models. In-sample and out-of-sample ex-
ceedance probabilities in %. Considered forecast horizons are 1000 and 1300 observa-
tions. Models which are rejected by the DQ test are marked with ∗ for rejection on 10%,
∗∗ on 5% and ∗∗∗ on 1% significance level.

achieved by the DKLL estimator are now less conservative, but instead always slightly

higher than the target probability 0.1%. On the other hand, out-of sample coverage and

backtest results are remarkably good especially for DAX and EuroSTOXX, where it shows

best results on one of the two considered forecast horizon, but also for DAX, where its

coverages are very close to 0.1%. Concerning S&P, the Asymmetric Slope CAViaR model

yields the most accurate fit, except for the in-sample exceedance rate, which is closer to

0.1% in the case of the DKLL model. According to the Kupiec test, the differences to the

nominal coverage are rarely significant, the only exception being the GARCH and AR-

TGARCH CAViaRs when predicting 1300 days of EuroSTOXX VaR, and GARCH CAViaR

for the extended forecast period of FTSE VaR.

It was pointed out in Kuester et al. (2006), that for comparison of VaR prediction strate-
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gies, the focus should not be limited to one or two probability levels, but one should take

a range of quantiles into account when deciding which model is the best.
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Figure 5.4: Coverage results in % for 0.1%-1% ranges of estimated EVT-augmented in-
dex VaRs. The evaluated forecast horizon is 1300 days. Nominal coverages are on the
horizontal axis, and the lines correspond to the differences of nominal and estimated
VaR exceedance shares (in %). The closer they are to zero, the better the (unconditional)
model fit.

We adapt their graphical representation of coverage accuracy in Figure 5.4 for VaR levels

between 0.1% and 1%. For the sake of clarity, the AR-TGARCH CAViaR, which usually

showed results that were similar to one of the other two CAViaR models, is not included

in the graph. It turns out that the Asymmetric Slope CAViaR is the stronger competitor

for the DKLL model, as in three out of four cases, the lines corresponding to its differ-

ences to the nominal coverages are closer to zero than those corresponding to the GARCH

CAViaR. In some ranges, e.g. 0.1%-0.5% FTSE VaR, the DKLL model clearly yields a very



6 SIMULATION: COMPARING DKLL AND EVT-REFINED VAR 25

good fit. In other cases, such as DAX, all three models do not hit the correct coverages.

The DKLL estimator, however, goes head to head with the CAViaR models, while some-

times even beating them.

6 Simulation: Comparing DKLL and EVT-refined VaR

This section is devoted to the question of whether it is sensible to refine the nonparamet-

ric VaR estimator with extreme value methods, instead of using the plain version even

for extreme VaR estimation. One would expect that especially for small data sets, the

EVT extrapolation into the far tails of return distributions yields more stable results than

estimating the tail quantiles directly. In order to check this, we carry out a small simula-

tion study to complement the empirical results from the previous sections. As the goal

is to assess the relative accuracies of DKLL and EVT-refined DKLL estimators, we do not

additionally include the CAViaR models.

To the FTSE time series, we fit a GARCH(1,1) model with t-distributed error terms. It has

the following form:

Yt = µ+ σtεt, σ2t = ω + αε2t−1 + βσ2t−1, εt ∼ tν . (6.1)

Parameter estimates are listed in Table 6.1.

µ̂ ω̂ α̂ β̂ ν̂

0.054 0.015 0.083 0.904 10

Table 6.1: Estimated GARCH parameters from the FTSE return series with 4998 observa-
tions. This estimated model is used in the simulation.

From the estimated model, a time series of 13000 observations is simulated. To obtain a

setup which is realistic with respect to usual data availability, only 2000 observations are

used to estimate the models, and 0.1% VaR predictions are computed over two forecast

horizons, N=5000 and N=10000. The advantages of simulated data are that they allow

for much longer horizons, and that the return quantile functions

qtp = σtF
−1
p (εt),
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where F−1p (εt) denotes the p-quantile of the error term distribution, can be computed be-

cause the input parameters are known. This allows us to compare the estimated VaRs to

their true counterparts. Table 6.2 shows coverages, mean squared errors, mean absolute

errors and median absolute errors in-sample and out-of-sample for both models.

in-sample: n=2000
cov. M̂SE M̂AE M̂ed.AE

DKLL 0.001 1.049 0.753 0.52
EVT-DKLL 0.001 0.605 0.579 0.429

out-of-sample: N=5000 out-of-sample: N=10000
cov. M̂SE M̂AE M̂ed.AE cov. M̂SE M̂AE M̂ed.AE

DKLL 0.009 3.673 1.359 0.9 0.008 3.379 1.253 0.787
EVT-DKLL 0.003 2.455 1.067 0.649 0.004 2.281 0.981 0.578

Table 6.2: Coverages and different loss functions from comparing the estimated 0.1%
VaRs with the true quantile function. Cov. stands for coverage, MSE for mean squared
error, MAE for mean absolute error and Med. AE for median absolute error.

Throughout, the EVT-augmented DKLL model yields lower losses and better coverages

than the plain DKLL model. In order to robustify this result, we repeated the simulation

for GARCH parameters estimated from EuroSTOXX data, and using different numbers

of in-sample observations. All these results, which are available on request, lead to the

conclusion that that the combination of standardized nonparametric residuals and ex-

treme value theory is a valuable complement to the rearranged DKLL estimator, which

we suggest to use for estimating moderately low quantiles.

7 Conclusion

In this paper, we propose a way to estimate and predict conditional Value at Risk from a

nonparametric model. We consider probabilities that are of practical interest for financial

institutions. For external market risk reporting, 1% portfolio VaRs have to be estimated

on a daily basis. Internal risk management sometimes requires to take into account even

more extreme probabilities such as 0.1%. Although typically very few observations are

available in the extreme tails, models to be used should be flexible and rest upon as few

structural assumptions as possible. We suggest to use nonparametric quantile regres-

sion, more specifically, a rearranged Double Kernel Local Linear VaR estimator as well
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as a version of the latter augmented by extreme value theory. Both are applied to differ-

ent index return time series. Forecast performances are benchmarked against the widely

used CAViaR models. Although these also perform well in many occations, none of the

considered specifications systematically dominates the others. In constrast to them, non-

parametric regression circumvents the issue of choosing the appropriate parametrization.

Backtesting results from the evaluation of real as well as simulated data examples lead to

the conclusion that the fully nonparametric and the EVT-refined nonparametric models

do not only outperform the parametric alternatives in a considerable number of situa-

tions, but that they can be used to predict VaR of any probability level of interest, even

when the estimation period is of moderate size. In recent years, computing power has

increased to such an extent that fully nonparametric models come at little more computa-

tion cost than other models that rely on more restrictive assumptions. From the results in

this paper, however, we conclude that the gains on the additional flexibility are substan-

tial and nonparametric quantile regression with EVT refinements should be considered

as a practical alternative for estimating and forecasting VaR.
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