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Abstract

We propose a methodology for forecasting the systemic impact of financial institu-
tions in interconnected systems. Utilizing a five-year sample including the 2008/9
financial crisis, we demonstrate how the approach can be used for timely systemic
risk monitoring of large European banks and insurance companies. We predict firms’
systemic relevance as the marginal impact of individual downside risks on systemic
distress. The so-called systemic risk betas account for a company’s position within
the network of financial interdependencies in addition to its balance sheet charac-
teristics and its exposure towards general market conditions. Relying only on pub-
licly available daily market data, we determine time-varying systemic risk networks,
and forecast systemic relevance on a quarterly basis. Our empirical findings reveal
time-varying risk channels and firms’ specific roles as risk transmitters and/or risk
recipients.

Keywords: Forecasting systemic risk contributions, time-varying systemic risk net-
work, model selection with regularization in quantiles

JEL classification: GO1, G18, G32, G38, C21, C51, C63

* Nikolaus Hautsch, Department of Statistics and Operations Research, University of Vienna, and Center
for Financial Studies, Frankfurt, email: nikolaus.hautsch@univie.ac.at. Julia Schaumburg, Faculty of Eco-
nomics and Business Administration, VU University Amsterdam, email: j.schaumburg@vu.nl. Melanie
Schienle, CASE and Leibniz Universitit Hannover, email: schienle @ewifo.uni-hannover.de. Research
support by the Deutsche Forschungsgemeinschaft via the Collaborative Research Center 649 “Economic
Risk” is gratefully acknowledged. Hautsch acknowledges research support by the Wiener Wissenschafts-,
Forschungs- und Technologiefonds (WWTF). J. Schaumburg thanks the European Union Seventh Frame-
work Programme (FP7-SSH/2007-2013, grant agreement 320270 - SYRTO) for financial support.



1. Introduction

The breakdown risk for the financial system induced by the distress of an individual firm
has long been neglected in financial regulation. Up to the financial crisis 2008-2009,
this systemic risk has been exclusively attributed to the idiosyncratic risk of an institu-
tion, abstracting from the strong network cross-dependencies in the financial sector caus-
ing potential risk spillover effects. In an extensive study for the U.S. financial system,
however, Hautsch, Schaumburg, and Schienle (2012) (HSS) show that it is mainly the
interconnectedness within the financial sector that determines the systemic relevance of
a particular firm, i.e. its potential to significantly increase the risk of failure of the en-
tire system - denoted as systemic risk. To quantify the systemic impact of an individual
company, they propose the so-called realized systemic risk beta, the total effect of a com-
pany’s time-varying Value at Risk (VaR) on the VaR of the entire system. Thus realized
systemic risk betas measure a firm’s contribution to systemic risk which then acts as a
measure for its systemic relevance. Firms’ tail risk is determined from company-specific
relevant factors among other companies’ tail risks, individual balance sheet characteris-
tics, and financial indicators, where components are selected as being “relevant” via a
data-driven statistical regularization technique. The resulting individual-specific models
give rise to a financial risk network, capturing exposures of financial firms towards the
distress of others. These network risk spill-over channels contain important information
for supervision authorities as sources for systemic risk. Their data-driven determination
of firms’ systemic relevance from publicly available data distinguishes HSS from the
number of other recently proposed methods for refined measurement and prediction of
systemic risk, see, e.g., Adrian and Brunnermeier (2011), White, Kim, and Manganelli
(2010), Huang, Zhou, and Zhu (2009), Brownlees and Engle (2011), Acharya, Pedersen,
Philippon, and Richardson (2010), Giesecke and Kim (2011), Billio, Getmansky, Lo, and
Pelizzon (2012), Koopman, Lucas, and Schwaab (2011), Engle, Jondeau, and Rockinger
(2012), or Schwaab, Koopman, and Lucas (2011) among many others.



Effective supervision requires models which can be used for forecasting and which are
reliable even if estimation periods are short. The original HSS framework, however, is
not tailored to short-term forecasting of systemic risk and must be adapted for prediction
purposes. Firstly, the HSS-systemic risk network is static, i.e., it is estimated once us-
ing the entire dataset and then forms the basis for estimation of respective time-varying
realized betas. However, empirical evidence suggests that network links might change
over time, especially in crisis periods. Secondly, in order to exploit additional variation,
quarterly balance sheet characteristics are interpolated by cubic splines over the analyzed
time period. Therefore, out-of-sample forecasting is not possible. Thirdly, the penalty
parameter required for the model selection step is chosen such that a backtest criterion
is optimized. VaR backtests, however, generally rely on counting and analyzing VaR ex-
ceedances, which is reasonable when the time series is long. Though for short estimation

periods, these tests should be replaced by more adequate quantile versions of F-tests.

In this paper, we extend the HSS framework to allow for flexible systemic risk fore-
casting. The estimation period is shortened using rolling windows of only one year of
data. This excludes influence of back-dated events on current forecasts while still per-
taining sufficient prediction accuracy. The models are re-estimated each quarter, resulting
in time-varying systemic risk networks. Instead of interpolating, information on firm-
specific balance sheets is only updated when it is published at the end of each quarter.
The model selection penalty is chosen such that the in-sample fit in the respective annual
observation window is optimal. This is examined via an F-test for quantile regression.
The empirical analysis investigates systemic risk in Europe. The data set covers stock
prices and balance sheets of major European banks and insurance companies as well as
financial indicators, including country-specific variables, during the period around the
2008/9 financial crisis. We illustrate that our approach could serve as a monitoring tool

for supervisors as it captures and effectively predicts systemic relevance over time.

The remainder of the paper is structured as follows. Section 2] outlines the forecasting

methodology. It provides an algorithm for model selection and estimation of firm-specific



VaRs and introduces how to estimate and forecast realized systemic risk betas. Section
B3] describes the data set. Estimation results, their detailed implications and respective

robustness checks are contained in Section 4l Section [S| concludes.

2. Forecasting Methodology

We extend the framework of Hautsch, Schaumburg, and Schienle (2012) (HSS) and the
HSS measure for systemic relevance in the presence of network effects, the realized sys-
temic risk beta. Whereas HSS focus on a single static network as a basis for estimating
systemic impact of financial institutions, we progress by determining time-varying net-
works in a forecasting setting. These allow capturing changing risk spillover channels

within the system, which are tailored to short-term forecasts from the model.

2.1. Time-Varying Networks

In a densely interconnected financial system, the tail risk of an institution 7 at a time
point ¢ is determined not only by its own balance sheet characteristics Z; , and general
market conditions M;_; but also by indications for distress in closely related banks in
the system. For each bank in the system, we regard a corresponding return observation as
marking a distress event whenever this return is below the empirical 10% quantile. In such
cases, these extreme returns might induce cross-effects on the riskiness of other banks in
the system. We record these as so-called loss exceedances, i.e., the values of returns in
case of an exceedance of the 10% quantile and zeros otherwise. Accordingly, the set of
potential risk drivers R for a bank 7 therefore comprises network impacts N, * from any
other bank in the system, where each component of N, * consists of loss exceedances for

any bank but firm 7 in the system.

We measure tail risk by the conditional Value at Risk, VaR?, for firm ¢ and by VaR*

for the system, respectively. Using a post-LASSO technique as in HSS, the large set of



potential risk drivers R, = (Z!_,, M,_;, N;*) for institution 7 can be reduced to a group
of “relevant” risk drivers Rgi) . Selected tail-risk cross-effects from other banks in the sys-
tem constitute network links from these banks to institution 7. Repeating the analysis for
all banks 7 in the system, relevant risk channels can be depicted and summarized in a re-
spective network graph. The recent financial crisis, however, has shown that such network
interconnections may change over time as the relevance of certain institutions for the risk
of others might vary substantially. Thus adequate short-run predictions of systemic im-
portance should mainly be based on current dependence structures. We address this issue
by a time-dependent selection of relevant risk drivers Rii’t) according to the algorithm de-
scribed below. Driven by the quarterly publication frequency of companies’ balance sheet
information we re-evaluate the relevance of all potential risk drivers for each institution
in the system at the beginning of each quarter based on data from the respective previous
12 months and incorporate the latest balance sheet news. We therefore obtain quarterly
time-varying tail risk networks which reflect the most current information of risk channels
within the financial system. They are tailored for short-term quarterly predictions of the

systemic riskiness of firms in the system.

With the relevant risk drivers R("") for firm 4 and time ¢ in a specific quarter, individual

tail risk can be determined from observations up to one year before ¢ as
Vo p _ fit fitplid)
VaR, =& + "R, (1)

where coefficients E are obtained in the post-LASSO step from quantile regression of X*

on (1, R%Y) as part of the procedure described below.

Selecting relevant risk drivers and determining their effects in firms’ tail risk

We adapt the data-driven procedure of HSS to account for time-variation in tail risk net-
works and marginal systemic risk contributions. The automatic selection procedure is

based on a sequential F-test in contrast to the backtest criterion in HSS. Determination of



relevant risk drivers R(“) at the beginning of a quarter ¢, uses information of observa-
tions within the previous year. Hence it is based on approximately 7 = 250 observations
Ryy—r, ..., Ry, where R, is a K-vector of centered observations of the potential regres-
sors. We fix a v-equidistant grid A, = {¢; > ... > ¢ =¢ —v(l — 1) > ¢, = 0} for
values of a constant ¢, where c; is chosen such that the corresponding penalty parameter
is sufficiently large for selecting not more than one regressor into the model. For our

purposes, we set ¢c; = 30 and v = 1.

Step 1: For each ¢ € A, determine the penalty parameter )\io(c) from the data in the

following two sub-steps as in Belloni and Chernozhukov (2011):

Step a) Take T+ 1 iid draws from /[0, 1] independent of R;, ., ..., R, denoted as

Uy, ..., U,. Conditional on observations of R, calculate

T

Z Rto—t,k(q - ](Ut < Q)) _
—~ /a1l —q)

o =4 D) B

Step b) Repeat step a) B=500 times generating the empirical distribution of Al .
conditional on R through A ,,..., A} 5. For a confidence level @ = 0.1 in

the selection, set

/\io(c) =c- Q(Aig, 1 —alRy ),

where Q(A; , 1 — a|Ry,—;) denotes the (1 — «)-quantile of Aj given Ry, .

Step 2: Run separate /;-penalized quantile regressions for A} (c1) and X} (c2) from step

1 and obtain
T K
i . 1 i i i Va(l—q) A qed
qto (c) = argmlngim Z Pq (Xtoft + Réoftf ) + A (C)f Z oxlékl (@)
t=0 k=1

with the set of potentially relevant regressors 2, = (Rto—t,k)szl, componentwise
variation 67 = —5 >1_((Ry,—1x)? and loss function py(u) = u(qg — I(u < 0)),

where the indicator /(-) is 1 for u < 0 and zero otherwise.



Step 3: Drop all components in R with absolute marginal effects \E;O (c)| below a thresh-
old 7 = 0.0001 keeping only the K% (c) remaining relevant regressors R(*)(c)
for ¢ € {c1,c2}. As ¢; > ¢, the sets of selected relevant regressors are nested
RO (c) € ROP) (cy) = {REP) (1), REGH) (cy\cp)}. If ROP)(cy\cp) is the empty
set, restart Step 2 with A¥(cy) and \'(c3) from Step 1. Otherwise re-estimate (2))
without penalty term for the larger model c, only with the respective selected rel-
evant uncentered regressors R(%'0)(c,) and an intercept. This regression yields the
post-LASSO estimates f’/Zf\O(cg). Apply an F-test for joint significance of regressors
R4 (cy\cy). If they are significant, restart Step 2 with A\'(c,) and \¥(c3) from Step
1b. Continue until additional regressors R (¢, 1\¢;) from penalty ¢; to ¢ are
no longer found to be significant. Then the final model is obtained from ¢; yielding
the set of relevant regressors R(%*0)(¢;) with corresponding post-LASSO estimates
/ét\o (¢;) for the coefficients.

Note that we aim at keeping the model parsimonious. Therefore we set the significance
level underlying the F-test in Step 3 to 5%. This corresponds to the minimum feasible
level still guaranteeing stability of the procedure given the available sample size and the
substantial correlation structure of regressors in the LASSO selection step. We found that
imposing higher accuracy of lower F-test levels, tends to induce robustness problems such
as non-nested models in the sequential upward procedure. In contrast, higher significance

levels generally result in larger systemic risk networks corresponding to a wider view of

potential “relevance”.



2.2. Forecasting Systemic Impact

In an interconnected financial system, we measure the systemic risk impact of a specific
bank ¢ as the total realized effect of its riskiness on distress of the entire financial system

given network and market externalitiesﬂ This can be empirically determined via

. . —1 ——(—i,t
VaR; = o* + BSW( FOVaR, +~v7 "M, + Hs’tVaRi ) , 3)

where @(_i) comprises tail risks of all other banks in the system selected as relevant
risk drivers for bank 7 in the corresponding network topology. The marginal effect 5°/%* of
the risk of company 7 might vary linearly over time in selected firm-specific balance sheet
characteristics Z;* ;. Coefficients in (3)) can be obtained via standard quantile regression
analogously to (2) without penalty term. Corresponding to the one-year estimation win-
dow for the time-varying network, we also determine parameters in (3] at the beginning
of each quarter, based on observations dating back no longer than one year. The systemic
relevance of a company can then be predicted from the beginning of a quarter ¢, to the

next quarter ¢y + 7 as realized beta

B e = B2 )VaR,, @)

where ¢t— denotes information up to time ¢. Within a quarter, predictions are updated by

gtjlj'm_ = plito(Zi \VaR, 5)

for any time point ty <t < tg+ T.

'Please note that we use the terms ‘systemic impact’, ‘systemic relevance’, and ‘systemic risk (contri-
bution)’ synonymously.



3. Data

Our sample of financial firms comprises 20 European banks and insurance companies. A
list can be found in Table [2| The dataset covers Europe-based banks deemed as systemi-
cally relevant by Financial Stability Board (2011), for which complete data sets over the
considered period are availableE] It includes the ten largest European banks by assets in
2010. Furthermore, six insurance companies are selected, all belonging (by assets) to the
top 10 insurers in the world in 2010. The regressors explaining the individual Value at
Risk (VaR?) are selected among other companies’ loss exceedances, individual balance

sheet ratios, and several financial indicators, including country-specific variables.

From quarterly balance sheets obtained from Datastream/Worldscope, three key ratios
are calculated: Leverage, correponding to total assets divided by total equity; maturity
mismatch, the quotient of short-term debt and total debt; and size, defined as the loga-
rithm of total assets. Furthermore, we include quarterly stock price volatility in the set
of possible regressors, which is estimated over the time span between quarterly reports.
Instead of interpolating the data to daily values, we keep them constant until new infor-

mation is published f]

The set of financial indicator variables contains the return on EuroStoxx 600, rela-
tive changes of the volatility index VStoxx, and returns on three major bond indices
for Europe: IBOXX Sovereign, containing government bonds, iBOXX Subsovereigns,
consisting of bonds issued by government owned banks, supranationals and other sub-
sovereigns, and iBOXX Corporates. Furthermore, we include changes in three months
Euribor, the interbank lending interest rate, and a liquidity spread between three months
Eurepo, the average repo rate reflecting the cost of repurchase agreements, and the three
month Bubill (German government bond rate) as proxy for the risk free rate. To capture

aggregate credit quality in Europe, we also add the change in the one year and five year

2Banco Espirito Santo is the only bank which is not listed by the Financial Stability Board. We include
it because otherwise, financial firms from Southern Europe would be underrepresented.

3For simplicity, we assume that quarterly balance sheets become public information on fixed dates:
March 31, June 30, September 30 and December 31.



default probability indices from Fitch as well as the change in the five year continued
series of the credit default swap index iTraxx Europe. Another two relevant economic
indicators are the gold price and relative changes of the MSCI Europe Real Estate Price

Index.

As proxies for the market’s expectations on economic growth and to capture country-
specific effects on individual VaRs, we include several ten year government bond yields
(Germany, United Kingdom, Spain, United States, and Greece) as well as yield spreads
(ten years minus three months yields) of German and U.S. government bonds. Finally,
accounting for the global interconnectedness of financial markets, we include returns on

financial sector indices, FTSE Financials Japan, Asia, and US.

When estimating systemic risk betas in the second stage, a subset of the above macro
financial indicators is required as control variables. Here, we take the changes in the
EuroStoxx 600 index, VStoxx, Euribor, iTraXX, the three FTSE Financial indices, the

real estate index, and the spread between Eurepo and the Bubill rate.

4. Results

4.1. Time-varying tail risk networks

Having identified the tail risk drivers for each firm allows constructing a tail risk network.
Following HSS, we take all firms as nodes in a network and identify a network link from
firm ¢ to firm 5 whenever the loss exceedance of i is selected as a tail risk driver for j.
Figures |1 to 4 show the resulting systemic risk networks for the 20 financial institutions
computed based on one-year rolling windows from 2006 to 2010. In order to illustrate
cross-country and inter-country risk channels, we order the institutions in the graph ac-

cording to their (main) home countries.

10



With our analysis we can statistically determine “relevant” (directed) risk connections
in the financial network. Identifying the underlying economic causes for a link between
two companies, however, is more difficult given the available data. Nevertheless, the in-
clusion of firm-specific characteristics and macroeconomic state variables allows us to a
certain extent to control for situations where firms have (similar) exposure to the same risk
factors. Such factors cause bi-directional relationships due to firms’ dependence on com-
mon situations, such as, for instance, periods of high volatility, flattening of yield curves,
increased sovereign default or falling overall credit quality. Accordingly, the identified
risk connections are not due to companies’ exposure to same economic conditions or risk
factors as captured by the included control variables, but are caused by (possibly remain-
ing) factors inherently related to inter-bank connections. These are most likely counter-
party relations (i.e., one firm is the counterparty of the other) and/or the same exposure to

toxic assets in firms’ balance sheets.

In this spirit, we identify several risk connections which remain quite stable over time
and thus appear as fundamental risk channels of the European financial network during
the period under consideration. An interesting such case is the tail risk connection be-
tween Deutsche Bank and various big insurance companies, particularly Allianz as well
as between Deutsche Bank and Commerzbank. The latter faced significant distress due
to investments in toxic assets originating from the U.S. housing market, and was the first
commercial lender in Germany accepting capital injections from the government. In the
beginning of 2009, Commerzbank was partly nationalised with the government taking a
25% stake. Our analysis reflects that the distress of Commerzbank also spilled over to
Deutsche Bank. Hence, governmental support of Commerzbank was an important step
to reduce its systemic risk contribution. This is empirically in line with our study as we
observe a declining tail risk connectedness of Commerzbank after the bailout. Persistent
risk connections are also identified between Royal Bank of Scotland (RBS) and Barclays.
Despite their perceived quite different situation (see Table[I]), the network analysis, how-
ever, reveals that both banks have been deeply connected. Being bi-directional before

the crisis, the links became particularly pronounced and rather one-directional during the
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Table 1: Schematic overview of the situation of two UK banks during the sample period.
RBS Barclays
April 2008: substantial write-downs due to April 2008 and before: relatively well funded,
break-down of U.S. housing and credit mar- even explored options to take over Lehman

kets Brothers
Start 2009: record loss, bailed out by UK gov-  Fall 2008: raise of new capital by investors
ernment (stake increase to 70%) Start 2009: no participation in government’s

insurance schemes for toxic assets required.

financial crisis. Probably caused by counterparty relations, RBS received substantial tail
risk from Barclays further increasing RBS’s potential losses and making both companies
systemically risky. The strong risk connection between Barclays and RBS vanishes in the
aftermath of the financial crisis which might be a result of RBS’s bailout and ongoing

re-structuring in both banks.

Furthermore, the networks reveal persistent connections between UBS and Credit Su-
isse, UBS and Crédit Agricole, Agricole and Société Générale as well as Credit Suisse
and Agricole. The strong interconnections between these Swiss and French banks are
likely to be driven by exposure to the same toxic assets and resulting liquidity shortages
stemming from the U.S. market making these banks facing common funding problems.
This happened during 2008/09, where all of these banks also received substantial tail risk
spillovers from others. For instance, our analysis reveals that Credit Suisse was subject
to tail risk inflow from Barclays and BNP Paribas which - according to the identified net-
work connections - spilled over to the ’risk neighbors’ of Credit Suisse. All of these banks
received bailout packages from the Swiss and French government, respectively. As a pos-
sible consequence of these bailouts and a relaxation of the bank’s funding situation in the
aftermath, Credit Suisse’s sensitivity to tail risk inflow from Barclays and BNP Paribas

actually declined in 2009.

Although all of these institutions operate on a global level, we still observe a substan-
tial extent of persistent country-specific risk channels. These effects reflect a strong inter-
connectedness and consequently inherent instability of national banking systems. These

within-country dependencies are complemented by cross-country linkages and industry-
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specific channels. Examples for the latter are tail risk connections prevailing within the
insurance sector including Allianz, AXA, Aviva, Miinchener Riick and Aegon. Their in-
terconnectedness even increased during the financial crisis which is likely to be caused by

exposure to the same classes of toxic assets.

Our approach, however, also captures interesting time variations in tail risk channels.
In particular, in 2008/09, we observe high fluctuations of network connections which are
likely to be caused by counterparty relations in combination with funding liquidity short-
ages. Accordingly, they vanished in the aftermath of the crisis. Examples are connections
from Santander to HSBC, BNP Paribas, Allianz and AXA. These links make Santander
systemically quite risky as the bank obviously produced and transmitted tail risk to vari-
ous major players in the system. These findings are confirmed by the estimated systemic
risk betas shown below. A further example is a strong connection between ING and Aviva
which built up and increased through the crisis and vanished thereafter. The Dutch bank
ING realized significant losses, had to cut jobs in 2009 and received capital injections

from the Dutch government.

Analyzing the pure number of outgoing tail risk connections (illustrated by the size
of nodes in the network graphs), we identify Barclays, Santander, AXA, BNP Paribas,
ING, Société Générale and Crédit Agricole as deeply connected companies. Actually,
the latter four were companies which have been bailed out by their governments and got
partly nationalized. Our analysis indicates that these governmental capital injections were
indeed justifiable as these companies have been (and still are) in the core of the network
and therefore serve as distributors and multipliers of systemic risk. According to the
identified network connections, failure of one of these institutions would substantially

threaten the stability of the financial system.
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4.2. Systemic risk rankings

After having determined individual companies’ VaRs, realized systemic risk betas can be
estimated and forecasts for each quarter can be computed according to equation 4, Table
M| reports systemic risk rankings for all quarters between the beginning of 2007 and the
end of 2010. They are based on realized systemic risk betas at the end of the respective
foregoing quarter, and therefore contain forecasts of relative systemic relevance. Prior to
the estimation, we conducted a test on joint significance of VaR® and VaR!- Z™* with i =
1,...20, for VaR?, using all five years of data. Apart from two exceptions, all individual
VaRs turn out to be statistically significant for the system’s VaR. The two exceptions
are, on the one hand, Banco Espirito Santo, which is the largest bank in Portugal, but
much less internationally active than the other banks in our sample. On the other hand,
Société Generale is found to be insignificant. We attribute this finding to the fact that in
2008, the bank was affected by large losses induced by the unauthorized propriety trading
of one of its employees. This was a materialization of (idiosyncratic) operational risk,
and may have distorted the test results concerning systemic relevance. We expect that
on a longer horizon, Société Generale’ systemic risk beta would be significant. In the
following, however, we exclude it from the systemic risk rankings, together with Banco

Espirito Santo.

It should be noted, that often differences in beta estimates between direct neighbor-
ing firms in the obtained rankings are small and thus not statistically significant. Hence
orderings in Table 4| should rather be seen as an indication for a company’s relative sys-
temic importance characterizing groups of similar relative systemic impact. We therefore
suggest a "traffic light system” of high, medium and low ranked systemically risky banks
as reported in Table ﬂ Clearly, when a financial firm is distressed, bailout decisions

should not be based solely on this categorization at the respective point in time. Instead,

4At some time points, estimated systemic risk betas become negative. We interpret this finding as
negligible systemic impacts of the respective firm in the respective quarter and therefore omit it in the
ranking.
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the evolvement of the measure should be observed over time and past periods should be

taken into consideration, in order to obtain a full picture of the firm’s systemic impact.

Figure [5]illustrates the time-varying cross-sectional distribution of the estimated betas
and the three traffic light groups. We observe the overall highest systemic risk betas during
the height of the financial crisis. Furthermore, representatively for other firms, we depict
the estimated systemic impacts of Barclays, Crédit Agricole, Santander and UBS. It turns
out that the respective systemic risk betas move in locksteps before mid 2008, but strongly
diverge during the crisis. Similar relationships are also shown for other companies and

reflect distinct crisis-specific effects.

These effects are supported by the pointwise, ungrouped results in Table [ revealing
strong variations of the relative systemic riskiness during the crisis. This is obviously
induced by a severe instability of the financial system during this period and is also con-
firmed by the high variability of network connections as discussed above. Conversely, a
higher stability of systemic risk patterns over time is observed in the periods before and
after the financial crisis (i.e., 2007 and 2010). Note that the high variation of pointwise
predicted systemic risk betas is neither an artefact of the LASSO-procedure for network
selection nor an indication of problems in selecting the penalization constant in practice.
Plots of estimated individual VaRs rather reveal a major part of the volatile behavior stem-
ming from the hard thresholding with which other companies’ loss exceedances are mea-
sured and thus appear and disappear as potential candidates for network links over time.
We leave it for future work to determine appropriate smoothed versions of exceedances.
In our study we remain conservative towards the type II error in detecting network links
and keep the extreme cut-off behavior where firms can only be risk drivers if in distress
and not on the way towards potential distress. Our recommended classification of firms

for supervisors in this setting is thus broad and groupwise as shown in Table 3]

Overall, we identify BNP Paribas, HSBC and Santander as being most risky with the
highest realized risk betas between 2007 and 2010. BNP Paribas was strongly affected

by the credit crunch and an evaporation of liquidity in the funding market in 2007/08
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and was bailed out by the French government end of October. Our findings reflect that
after the bailout, BNP’s systemic riskiness was still comparably high. According to the
network analysis above, this is obviously due its strong interconnectedness, particularly
in 2010. In contrast HSBC’s connectedness is only moderate. However, its size and
the identified tail risk connections to Barclays, BNP and Santander make it systemically
quite risky. These connections became obviously quite relevant due to HSBC’s heavy
exposure to U.S. housing and credit markets. Consequently, the bank’s distress induced
by significant losses during the crisis have been spread out in the system resulting in
a particularly high systemic riskiness around beginning of 2009. Our results indicate
that also in the aftermath of the crisis, HSBC still remains systemically quite risky. In
case of Santander, the relative systemic riskiness (compared to other banks) even tends
to increase after the financial crisis (particularly in 2010). This finding might already
indicate funding problems in the Spanish banking market becoming particularly evident in
2012. These results are in line with the findings of the network analysis above identifying
Santander as a deeply interconnected bank being linked to several insurance companies

and (particularly during the crisis) to other major players like Barclays and HSBC.

Monitoring systemic risk rankings over the course of the financial crisis provides inter-
esting insights into the systemic importance of individual firms under extreme conditions
of market distress. Four prominent examples are RBS, Barclays, Deutsche Bank and
HBSC. According to the estimated systemic risk betas, we classify RBS as belonging
to the most systemically risky companies in 2008. Also Barclays is identified as being
systemically very relevant in several (though not all) periods in 2008/09. The identified
network connections revealed that the strong connection between Barclays and RBS was
obviously one driving force of the systemic relevance of both. This is also confirmed
by the fact that the systemic relevance of both (as indicated by the realized betas) de-
clined as the tail risk connection between both vanishes in 2009. Likewise, Deutsche
Bank faces a steady increase of its systemic relevance in 2007 and belongs to the group
of systemically most risky companies in 2008. This is confirmed by the network analysis

above showing that particularly during 2008, Deutsche Bank was deeply interconnected
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with risk channels to various major insurance companies. Although Deutsche Bank was
not subject to any government bailouts it went through a process of substantial internal
restructuring. This is confirmed by our estimates showing a decline of Deutsche Bank’s
systemic importance during 2009 and 2010. Finally, for the post-crisis period, we observe
a tendency for the insurance companies becoming relatively more risky. Particularly in
2010, Allianz, Aviva, Axa, Generali and Miinchener Riick reveal relatively high (though
not always significant) systemic risk betas. Likewise, also Société Générale and Credit
Suisse are identified as systemically risky in 2010. These findings are confirmed by the
network analysis showing a comparably high connectedness of Société Générale, Axa and

Generali.

To analyze whether systemic risk betas are related to companies’ balance sheet charac-
teristics, we compare rankings of quarterly averaged realized systemic risk beta estimates
to rankings according firms’ size, leverage, and maturity mismatch. In particular, we

estimate Kendall’s rank correlation coefficient according to

number of concordant pairs — number of discordant pairs
0.5n(n — 1) '

7=

7 is known to be more robust towards deviations from normality than the Pearson corre-
lation coefficient (see, e.g., Dehling, Vogel, Wendler, and Wied (2012), and aims directly

at comparing the ordering of variables.

To distinguish between a pre-crisis and (post) crisis period, we compute Kendall’s 7
for pooled data from 2006 to the end of 2007 (8 quarters) as well as for the subsequent
period including the crisis and its aftermath (12 quarters). Table [5| reports the estimated
rank correlations together with the outcomes of one-sided significance tests, with the null
hypothesis Hy : 7 < 0. Based on the pre-crisis period, we find that correlations of 0,11
between systemic risk betas and leverage as well as maturity mismatch are significant
at a 5% level, whereas the correlation with size is smaller and only significant at 10%.
These results indicate that even in non-crisis periods mainly network effects do drive pre-

dictions of systemic relevance in realized systemic risk betas rather than idiosyncratic
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characteristics. Within the firm specific effects, we also find that size is not the domi-
nating factor which is in contrast to the well-known “’to big to fail” statement. Important
idiosyncratic risk drivers are rather leverage and funding risk, approximated by maturity
mismatch. During the (post) crisis period, estimated correlations become insignificant
and are virtually zero. This shows that from 2008 onwards, the influence of observable
firm characteristics even decreases further and network connections are the pre-dominant
drivers for short-term predictions of firm’s systemic riskiness. This also corresponds to a

sharp increase of realized systemic risk beta forecasts as shown in Figure [5

4.3. Out-of-sample validation of forecasts

A direct evaluation of realized systemic risk beta forecasts is not possible, since they
cannot be observed even ex post. As systemic risk betas measure the effect of firms’ tail
risk on the tail risk of the system, an observable proxy benchmark is the tail correlation
between the system return and each individual company’s return. Accordingly, for a first
rough forecast validation setting, we compute quarterly tail correlations based on 10%
quantiles balancing the need of a sufficient number of observations on the one hand and
the need to capture fail risk. In particular, we estimate the correlations for each quarter %
as

ot = corry (X, X'X* < qoa(X*), X' < qoa(XY)),

for from observations X7, X; with ¢ = to; + 1, ..., {ox + 7% for each end-of-quarter time
point ¢g ,, where 7, denotes the length of the next quarter, using the Pearson correlation

coefficient, see e.g. Ang and Chen (2002).

As a naive benchmark for assessing a firms’ marginal relevance in the financial system,
we compute a simple financial system CAPM-type beta defined as the slope coefficient in
time series regressions of individual returns on the system return. We take this simplistic
competitor as a lower bound benchmark, which is much easier to obtain than our realized

systemic risk beta but is obviously naive” as it does not account for tail dependencies but
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just mean dependencies and reverts the causality between system returns and individual
returns. To evaluate the two different forecasts, we compute the 1? in separate forecast
regressions of the form

e =0+ mb +e;’ 6)

. : ; sli CAPM,i
where k is the quarter index and b € { By, At By, At

}. The higher the respective R?,
the more variation in future tail correlation is explained by the respective systemic risk
forecast. Boxplots of all R?s for the different companies are shown in Figure @ It turns
out that the realized systemic risk beta clearly outperforms the “financial system beta” in
forecasting future tail dependence between the system and individual banks and insurance

companies.

In a second forecast evaluation scenario, we study the ability of the two measures to
explain variations in returns in periods of extreme (negative) realizations denoted as the
10% worst outcomes of equity returns for each firm. Accordingly, we take the average
10% loss exceedances Ex" of all firms in the quarter k following the estimation period,
and run cross-sectional regressions thereof on the respective realizations of the two com-
peting betas,

Ex, = (o + Gbl + 57, (7

with % defined as above. Such a regression has some analogy to a typical second pass
CAPM regression linking cross-sectional variations in excess returns to the cross-sectional
variation in market betas. Although the systemic risk beta is not tailored to such a setting,
our findings in Figure [/| show that on average it provides a better prediction of extreme

market valuations than a the simple financial system CAPM-type beta.

5. Conclusion

In this paper, we propose a framework for forecasting financial institutions’ marginal con-

tribution to systemic risk based on their interconnectedness in terms of extreme downside
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risks. There are four major challenges in this context: Firms’ (conditional) tail risks
are unobserved and must be estimated from data. Determining such individual risk lev-
els appropriately results in high-dimensional models due to the large number of potential
network connections. These network dependencies, however, vary substantially over time
in the considered hard-thresholding case for cross-effects. Therefore forecasting stability
and responsiveness require careful balancing and yield a traffic light system for systemic
risk forecasts. To tackle these issues, we adapt the two-stage quantile regression approach
by Hautsch, Schaumburg, and Schienle (2012) to a rolling window out-of-sample predic-

tion setting based on time-varying networks.

In a sample of large European banks covering the period 2007 to 2010, the adapted pro-
cedure reveals the dynamic nature of interconnectedness and corresponding risk channels
in the European financial system around and during the financial crisis. The time evolu-
tion of network dependencies provides valuable insights into a bank’s role in the system
identifying originators and transmitters of tail risk over time. Determined relevant tail
risk connections and systemic risk rankings both provide valuable input for supervision
authorities. Given the need for better and more timely market surveillance, our approach
can thus serve as a useful vehicle for providing a continuous assessment of systemic risk

dependencies based on market data.
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Appendix

Table 2: List of included financial institutions. As most of them provide a
broad range of services, we differentiate between banks and insurance com-
panies, according to their main field of business activities. Furthermore, we
state the country their headquarters are located in.

Aegon (Insurance, NL) Deutsche Bank (Bank, DE)

Allianz (Insurance, DE) Generali (Insurance, IT)

Aviva (Insurance, UK) HSBC (Bank, UK)

AXA (Insurance, FR) ING Groep (Bank, NL)

Banco Espirito Santo (Bank, PT) Lloyds Banking Group (UK)
Barclays (Bank, UK) Munich Re (Insurance, DE)

BNP Paribas (Bank, FR) Royal Bank of Scotland (Bank, UK)
Commerzbank (Insurance, DE) Santander (Bank, ES)

Crédit Agricole (Bank, FR) Société Générale (Bank, FR)

Credit Suisse (Bank, CH) UBS (Bank, CH)

21



L00Z/€0O 01 9007/ WOIJ IOA0 P[0 YIOMIAU ISII ITWA)SAS A[18A JO sajewn)sy : N3

2[eIBUD?IBI0S

ajoouByIpaID fesous
S <
sequeddng PR 5 uoBay
P

XY \mv \\ P ﬂ oNI
p <O QHITAS

SsactAI\ Ve
IS
R

£00Z°TO - 9002'20 :pouiad uonewns3 9002'¥0 - 9002 T :pouad uonewns3

22



'800Z/€0 01 L00Z/HO WOIJ IOAO PI[[OI JI0MIU YSLI IIWIISAS A[IBAL JO S9jeWNSH 7 INTL

sphof

pueposSUEGRAY

8002°€D - 2002 ¥ :pouad uonewns3 800220 - £002'€D :pouad uonewns3y

8002 TO - £002'20 :pouiad uonewns3 2002 %0 - £00Z°TO :pouiad uonewns3y

23



'6002/€0 01 800Z/HO WOIJ IOAO PI[[OI JIOMIAU YSLI DIWIISAS A[IBIL JO SABWNSH ¢ INTL

2j02uBVIPRIgUED 810105 R, apoouBYIBI m_m_m:wwwuw_n_u_MWchw
> ras 4
sequeddng oy sequeddNg w\ %gﬂ/r Boy
\Q\\\ _‘A N AY’ A
WSS\ VAR
wXY ONI vxv o M PR Y, w\»”l oNI

e
N/
(/ y ]
/) \ Y
Japuelues - IapueUeS ’ ‘ ,* ojuesojds30oueg

O L.Q’ 2 \\ihh&'.!»lv o3
\ 7 Q
N s
joreg NuegayosInea W/ ‘Wlw w’\‘ &4 «‘ "/ ”\\ joreg
SY; V>
,J_V .\\ oasH
,. sphon

eARY

,ﬂ A
V

249SH ueqziawwo; 0 ,I/
san puepoosyueg|eloy san

zueyy
puepossyuegefoy
assINSypaIdy assINSNpaI)

6002°€0 - 8002 ¥ :pouad uonewns3y 600220 - 8002'€D :pouad uonewns3

6002 TO - 800220 :pouiad uonewns3 8002'¥O - 8002 TO :pouad uonewns3

24



Estimation period: Q2.2009 - Q1.2010

Estimation period: Q1.2009 - Q4.2009

RoyalBankScotland

RoyalBankScotland

Estimation period: Q4.2009 - Q3.2010

Estimation period: Q3.2009 - Q2.2010
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Figure 4: Estimates of yearly systemic risk network rolled over from Q4/2004 to Q3/2010.
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Table 3: Group rankings of systemically risky companies, according to their quarterly realized systemic
risk beta forecasts Es‘i (see equation {J). "High’ systemic risk is reflected by a realized systemic risk beta
above the 75% quantile of all realized systemic risk betas at the respective end-of-quarter time point. Com-
panies listed in the *'medium’ group have realized systemic risk betas above the 25% quantile but below the
75% quantile. "Low’ represents the ones below the 25% quantile.

QI1.2007
high  Aegon, Allianz, Commerzbank, CreditAgricole, Generali
med. Aviva, AXA, Barclays, BNPParibas, HSBC, ING, Lloyds, RoyalBankScotland
low CreditSuisse, DeutscheBank, Munich Re, Santander, UBS

Q2.2007
high  Aviva, BNPParibas, Commerzbank, DeutscheBank, UBS
med. Aegon, Allianz, AXA, Barclays, CreditSuisse, ING, Munich Re, Santander
low CreditAgricole, Generali, HSBC, Lloyds, RoyalBankScotland

Q3.2007
high AXA, Barclays, DeutscheBank, HSBC, ING
med. Aviva, CreditAgricole, CreditSuisse, Generali, Lloyds, RoyalBankScotland, Santander, UBS
low Aegon, Allianz, BNPParibas, Commerzbank, Munich Re

Q4.2007
high  Aviva, AXA, BNPParibas, DeutscheBank, RoyalBankScotland
med. Aegon, Allianz, Commerzbank, CreditAgricole, CreditSuisse, HSBC, ING, Munich Re
low Barclays, Generali, Lloyds, Santander, UBS

QI.2008
high  Barclays, Commerzbank, CreditAgricole, CreditSuisse, Santander
med. Aegon, Aviva, BNPParibas, DeutscheBank, Lloyds, Munich Re, RoyalBankScotland, UBS
low Allianz, AXA, Generali, HSBC, ING

Q2.2008
high AXA, CreditAgricole, Generali, Munich Re, RoyalBankScotland
med. Aegon, Aviva, BNPParibas, Commerzbank, DeutscheBank, HSBC, Lloyds, Santander
low Allianz, Barclays, CreditSuisse, ING, UBS

Q3.2008
high  Aviva, Barclays, CreditSuisse, DeutscheBank, Santander
med. BNPParibas, Commerzbank, Generali, HSBC, ING, Lloyds, Munich Re, RoyalBankScotland
low Aegon, Allianz, AXA, CreditAgricole, UBS

Q4.2008
high  BNPParibas, DeutscheBank, HSBC, RoyalBankScotland, Santander
med. Allianz, AXA, Commerzbank, Generali, ING, Lloyds, Munich Re, UBS
low Aegon, Aviva, Barclays, CreditAgricole, CreditSuisse

Q1.2009
high  Aegon, Aviva, AXA, Barclays, BNPParibas
med. Allianz, Commerzbank, CreditAgricole, Generali, HSBC, RoyalBankScotland, Santander, UBS
low CreditSuisse, DeutscheBank, ING, Lloyds, Munich Re

Q2.2009
high  Aegon, Barclays, CreditAgricole, ING, Santander
med. Allianz, Aviva, AXA, BNPParibas, HSBC, Lloyds, Munich Re, UBS
low Commerzbank, CreditSuisse, DeutscheBank, Generali, RoyalBankScotland

Q3.2009
high  Aviva, Commerzbank, ING, Lloyds, Santander
med. Aegon, AXA, BNPParibas, CreditAgricole, CreditSuisse, HSBC, RoyalBankScotland, UBS
low Allianz, Barclays, DeutscheBank, Generali, Munich Re

Q4.2009
high  Barclays, BNPParibas, CreditAgricole, HSBC, Santander
med. Allianz, Aviva, AXA, DeutscheBank, ING, Lloyds, Munich Re, RoyalBankScotland
low Aegon, Commerzbank, CreditSuisse, Generali, UBS

QI1.2010
high  Allianz, AXA, Generali, Lloyds, UBS
med. BNPParibas, Commerzbank, CreditAgricole, CreditSuisse, DeutscheBank, HSBC, ING, Santander
low Aegon, Aviva, Barclays, Munich Re, RoyalBankScotland

Q2.2010
high  Aviva, CreditSuisse, DeutscheBank, ING, UBS
med. Aegon, Allianz, AXA, BNPParibas, Generali, HSBC, RoyalBankScotland, Santander
low Barclays, Commerzbank, CreditAgricole, Lloyds, Munich Re

Q3.2010
high  Aviva, AXA, Generali, HSBC, Santander
med. Aegon, Allianz, Commerzbank, CreditAgricole, CreditSuisse, ING, Munich Re, UBS
low Barclays, BNPParibas, DeutscheBank, Lloyds, RoyalBankScotland

Q4.2010
high  Aviva, BNPParibas, Generali, Munich Re, RoyalBankScotland
med. Aegon, Allianz, AXA, Commerzbank, CreditSuisse, ING, Santander, UBS
low Barclays, CreditAgricole, DeutscheBank, HSBC, Lloyds
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Table 4: Systemic risk rankings for 2007 - 2010, based on quarterly re-

alized beta forecasts 3°/7 - 100, see equation

rank name forecast | rank name forecast
QI.2007 Q2.2007
1 Aegon 0.7667 1 BNPParibas 0.8551
2 Commerzbank 0.6819 2 UBS 0.4262
3 Generali 0.5671 3 Aviva 0.2844
4 CreditAgricole 0.5077 4 Commerzbank 0.2732
5 Allianz 0.4704 5 DeutscheBank 0.2381
6 BNPParibas 0.3858 6 AXA 0.1734
7 HSBC 0.3611 7 Munich Re 0.1625
8 Royal Bank of Scotland  0.3472 8 Aegon 0.1332
9 Lloyds 0.2887 9 Allianz 0.1224
10  Aviva 0.2615 10 CreditSuisse 0.0952
11 AXA 0.2584 11 ING 0.0513
12 Barclays 0.1794 12 Santander 0.0393
13 ING 0.1651 13 Barclays 0.0067
14 DeutscheBank 0.1645
15 CreditSuisse 0.0358
Q3.2007 Q4.2007
1 HSBC 0.3127 1 DeutscheBank 0.7296
2 DeutscheBank 0.3068 2 Aviva 0.5705
3 ING 0.2849 3 Royal Bank of Scotland  0.5701
4 Barclays 0.2687 4 AXA 0.5556
5 AXA 0.2125 5 BNPParibas 0.5056
6 Generali 0.2087 6 CreditAgricole 0.4205
7 CreditSuisse 0.2016 7 CreditSuisse 0.3586
8 Santander 0.1947 8 HSBC 0.3203
9 Aviva 0.1726 9 Aegon 0.3123
10 CreditAgricole 0.1007 10 ING 0.2791
11 Royal Bank of Scotland  0.0906 11 Allianz 0.2584
12 UBS 0.087 12 Munich Re 0.1954
13 Lloyds 0.0672 13 Commerzbank 0.14
14  Commerzbank 0.0143 14 Lloyds 0.0957
15 Santander 0.0779
16  Barclays 0.021
QT1.2008 Q2.2008
1 CreditAgricole 0.6305 1 AXA 0.9233
2 CreditSuisse 0.6101 2 Royal Bank of Scotland  0.8246
3 Barclays 0.5923 3 Munich Re 0.7661
4 Commerzbank 0.5167 4 Generali 0.543
5 Santander 0.4507 5 CreditAgricole 0.5402
6 BNPParibas 0.3875 6 Lloyds 0.5272
7 Royal Bank of Scotland  0.3754 7 BNPParibas 0.412
8 DeutscheBank 0.3482 8 DeutscheBank 0.3884
9 UBS 0.2794 9 Aviva 0.2378
10  Aviva 0.2606 10  Commerzbank 0.2346
11 Munich Re 0.1351 11 HSBC 0.2261
12 Lloyds 0.1148 12 Aegon 0.1683
13 Aegon 0.0255 13 Santander 0.1582
14  HSBC 0.0166 14 CreditSuisse 0.1527
15  Barclays 0.028
16  UBS le-04
Q3.2008 Q4.2008
1 Barclays 1.1002 1 HSBC 1.4576
2 Santander 1.07 2 DeutscheBank 1.3393
3 Aviva 0.695 3 Santander 0.5148
4 CreditSuisse 0.6931 4 Royal Bank of Scotland ~ 0.4998
5 DeutscheBank 0.611 5 BNPParibas 0.3873
6 ING 0.5266 6 UBS 0.346
7 Lloyds 0.3671 7 Generali 0.3118
8 Generali 0.349 8 Munich Re 0.2926
9 HSBC 0.3427 9 AXA 0.2877
10 Royal Bank of Scotland  0.2964 10 ING 0.0797
11 Munich Re 0.2384 11 Lloyds 0.0626
12 BNPParibas 0.1691
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Table 4 — Continued from previous page

rank name forecast | rank name forecast
Q1.2009 Q2.2009
1 Aegon 2.15 1 Aegon 2.3266
2 Barclays 1.7684 2 CreditAgricole 1.6192
3 Aviva 1.5562 3 ING 1.4976
4 AXA 1.4611 4 Barclays 1.4567
5 BNPParibas 0.9237 5 Santander 1.3259
6 Allianz 0.91 6 Lloyds 1.0107
7 CreditAgricole 0.8189 7 AXA 0.4753
8 HSBC 0.6697 8 HSBC 0.4607
9 UBS 0.5514 9 Munich Re 0.4417
10 Commerzbank 0.3426 10 Allianz 04111
11 Santander 0.3033 11 BNPParibas 0.3134
12 Royal Bank of Scotland  0.2653 12 UBS 0.1028
13 Generali 0.2347 13 Aviva 0.0869
Q3.2009 Q4.2009
1 Commerzbank 1.1065 1 Santander 1.0097
2 ING 0.764 2 HSBC 0.8452
3 Aviva 0.7615 3 CreditAgricole 0.8385
4 Santander 0.6639 4 BNPParibas 0.701
5 Lloyds 0.5824 5 Barclays 0.6265
6 CreditSuisse 0.5009 6 Allianz 0.6225
7 BNPParibas 0.4688 7 Royal Bank of Scotland  0.6223
8 AXA 0.3878 8 Lloyds 0.4773
9 Aegon 0.3393 9 Munich Re 0.4717
10 HSBC 0.3103 10 ING 0.4241
11 CreditAgricole 0.2886 11 DeutscheBank 0.3327
12 UBS 0.0276 12 Aviva 0.2057
13 Royal Bank of Scotland 0.02 13 AXA 0.1675
14 Generali 0.0797
QI1.2010 Q2.2010
1 Commerzbank 1.1065 1 Santander 1.0097
2 ING 0.764 2 HSBC 0.8452
3 Aviva 0.7615 3 CreditAgricole 0.8385
4 Santander 0.6639 4 BNPParibas 0.701
5 Lloyds 0.5824 5 Barclays 0.6265
6 CreditSuisse 0.5009 6 Allianz 0.6225
7 BNPParibas 0.4688 7 Royal Bank of Scotland  0.6223
8 AXA 0.3878 8 Lloyds 0.4773
9 Aegon 0.3393 9 Munich Re 0.4717
10 HSBC 0.3103 10 ING 0.4241
11 CreditAgricole 0.2886 11 DeutscheBank 0.3327
12 UBS 0.0276 12 Aviva 0.2057
13 Royal Bank of Scotland 0.02 13 AXA 0.1675
14 Generali 0.0797
Q3.2010 Q4.2010
1 Aviva 0.6742 1 BNPParibas 1.4104
2 Generali 0.6008 2 Generali 0.503
3 AXA 0.5016 3 Munich Re 0.4914
4 HSBC 0.4951 4 Aviva 0.4862
5 Santander 0.4588 5 RoyalBankScotland 0.4371
6 CreditSuisse 0.4493 6 Santander 0.3784
7 Munich Re 0.261 7 Allianz 0.3589
8 Aegon 0.2226 8 AXA 0.2553
9 ING 0.21 9 ING 0.2052
10  UBS 0.151 10  UBS 0.1886
11 CreditAgricole 0.1475 11 Aegon 0.1367
12 Allianz 0.1148 12 CreditSuisse 0.1355
13 Commerzbank 0.0749 13 Commerzbank 0.0979
14 Lloyds 0.0426 14 CreditAgricole 0.0334
15  Barclays 0.0345
16  RoyalBankScotland 0.0222

% Avoiding multicollinearity, we include in Z** only the one component of Z* which exhibits the lowest
correlation with VaR" in the respective interaction term in (3).
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Figure 6: Boxplots of k2 from forecast regressions according to equation @
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Figure 7: Boxplots of R? from forecast regressions according to equation
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Table 5: Estimated rank correlation (Kendall’s 7) between three quarterly balance sheet
characteristics and average realized systemic risk betas.

firm characteristic | 7-rank correlation with 3°I° for pooled data

Q1/2006-Q4/2007 Q1/2008-Q4/2010
size 0.07%%* -
leverage 0.1 1% -
maturity mismatch 0.1 1%%* -

wk ek p-val. (Hp @ 7 < 0) significant at 10% / 5%. - : p-val. (Hp : 7 < 0) not rejected at 30% .
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