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Appendix B Proofs

In this web appendix we establish the existence, strong consistency and asymptotic normality
of the MLE of the static parameters 6 that define the stochastic properties of the spatial score
model from Section[2] We first present the results in a more general setting than the spatial score
model, thus extending the results in|Blasques et al.| (2014) to allow for the presence of exogenous

regressors.

B.1 Stochastic properties of the filtered spatial dependence parameter

To establish the consistency and asymptotic normality of the MLE, we first study the stochastic
properties of the filtered parameter f; defined through equations (8)), (IT)), and (12)). The filtered f;s
directly determine the time-varying spatial parameter p; = h(f;). Understanding the properties of
the filtered parameters is key to understanding the stochastic properties of the likelihood function
over the parameter space ©.

We first introduce some additional notation. Let the T-period sequences {y;(w)}i_; and
{X;(w)}]_, be subsets of the realized path of n and k-variate stochastic sequences y(w) :=

{y1(w) }rez and X (w) := {X;(w)}sez, for some w in the event space 2. In particular]]] we let

'The random sequences y and X are thus §/9B()s) and §/9B (X )-measurable mappings y : Q — Voo C R
and X : Q — Xoo C RE where R = x!Z _R" and RY, := x!=>°_R¥ denote Cartesian products of infinite
copies of R™ and R¥ respectively, and Voo = x1Z% Y and Xoo = XIZ2 X with B(Veo) = B(RY) N Voo and
B(Xs) = B(RE) N Xo; see (Billingsleyl (1995, p.159). Here, B(RZ) and B(RE,) denote the Borel o-algebras
generated by the finite dimensional product cylinders of R’ and R%, respectively, § denotes a o-field defined on the
event space €2, and together with the probability measure Pg on F, the triplet (2, §, Po) denotes the common underlying

complete probability space of interest.



yi(w) € Y C R"and X;(w) € X C RF forall (w,t) € Q x Z. For every w € (, the stochas-
tic sequences y(w) and X (w) thus live on the spaces (Yoo, B(Voo), P§) and (Xoo, B(Xao), PgY)
where the probability measures P are Pé( are defined over the elements of the Borel o-algebras
B(Vso) and B(Xs.). We write the filtered time-varying parameter as f; to distinguish it from the
true time-varying parameter f;. More precisely, we write the filtered time-varying parameter as
{fe(y¥t=1, X110, f1)},en, which depends naturally on the initialization f; € F C R, the past
data y'*1 = {y,}'2! and X! = {X,}'Z}, and the parameter vector @ € ©. For notational
simplicity we often omit the dependence on the data and write { f;(8, f1) };en instead.

We can now rewrite the score update in (8] as

ﬁ+1<97f1) =w+ A S(ft(ev.fl)aytaXt;/Ba)\) =+ Bﬁ(97f1) Vite N7

where s(f;(6, f1), yi, Xs; 5, A) denotes the unit scaled score function. To shorten the notation, we

define the random function

o (f2(0,£1):0) = ¢(f:(0, fr),ye, X150)
= w+AS(ft(0af_1)7yt7Xt;ﬁ7)‘)+Bft(97f1)v

as well as the supremum of its derivative,

$,(0) := sup |A s(f,ye, Xe; B, \)

+ Bj|. B.1
feF of ®-1)

Note that ¢; () is also a random variable due to its dependence on (v, X;).

The following theorem states sufficient conditions for the stochastic sequence { (6, f1)}ren
initialized at f; € F to converge almost surely, uniformly in & € ©, and exponentially fast
to a limit stationary and ergodic (SE) sequence { ﬂ(@)}tez that has Ny bounded moments. We
repeatedly make use of this notion of uniform exponentially fast almost sure convergence (e.a.s.),

which means that there exists a v > 1 such that

sup vt‘ﬁ(ylzt_l,Xlzt_l,H,ﬁ) —fi(y X 0)| 30 as t— oo

6coO

see [Straumann and Mikosch| (2006). Note that the limit sequence starts in the infinite past and

hence depends on the infinite past data y*~! := {y,}!=! and X*7! = {X,}IZ! | ie,

S§=—00 §=—00"°

{fi(@ Yz = {fi(y'', Xt71:0)},cz. We thus establish the convergence of the sequence of



random functions { f;(-, f1)}scx defined on © with random elements taking values in the Banach
space (C(@®, F),|| - |le) for every t € N, to an SE limit { f;(-) };cz with elements taking values in

(C(®),] - |l@), where || - ||@ denotes the supremum norm on ®. We have the following result.

Theorem B.1. Let F be convex, ® be compact, {y; }1cz and {X}iez be SE, s € C(F x ) X
X x B x A) and assume there exists a non-random fi € F such that
(i) Elog™ supg yyepxa |(f1sye Xe3 B, A)| < 00;
(ii) Elogsupgee ¢1(0) < 0.
Then { f1(0, f1) }ien converges e.a.s. to the unique limit SE process { f;(0)}1cz.
If furthermore 3 Ny > 1 such that
(iii) Esup (s ayesxa [5(f1, 46, Xe3 8, NN < oo;
and either
(iv) supg nyessa 5(F, 4, X5 8,0) = s(f, X, 8,0 < [f = f I Y(f, [y, X) € F x F x
Y x X;
or
(V') Esupgee #,(0)N < 1 and fi(0,f1) L #,(0)V (t,f1) € N x F, where L denotes
independence;
then both {f,(0, f1)}ten and the limit SE process { fi(0)}icz have Ny bounded moments, i.e.,

sup; Esupgce \ft(ﬂ, fl)]Nf < 00 and Esupgcg |ft(0)|Nf < 0.

The first claim of Theorem 1 makes use of the conditions in [Bougerol (1993a). Condition
(i) requires the existence of an arbitrarily small moment for the score, and condition (ii) requires
the spatial score update to be contracting on average. The uniqueness of the SE limit follows
from [Straumann and Mikosch| (2006)). The second claim of Theorem [B.1] uses stricter moment
conditions and contraction conditions to obtain bounded moments of higher order for the filtered
sequence. This constitutes an extension of Proposition 1 in Blasques et al.| (2014) to the spatial
score setting with exogenous random variables X; as well as vector and matrix arguments. Remark
[B.2] below highlights that in the special case where the score is uniformly bounded, then the filter

has infinitely many bounded moments under simpler conditions.

REMARK B.2. Let ‘B| < 1. Ifg = Sup(ﬁ’k’ﬁy,x)eng:xyx‘)( |S(f,y,X,B,)\>’ < 00, then
sup, Esupgee | (0, f1)|V < 00 and Esupgeg | f1(8)|N7 < oo hold for every Ny > 1.

The proof of this statement follows immediately by noting that | fy;1| < Z;;% | B (|w|+|A]| 5) +

’Bt_lfﬂ < 0.



B.2 Asymptotic properties of the maximum likelihood estimator

The observation-driven structure of the time-varying spatial lag model allows us to perform max-
imum likelihood (ML) estimation in a straightforward way. Following equation (I0)), we define
the ML estimator (MLE) of the static parameter vector € as an element of the arg max set of the

sample log likelihood function £7(8, f1),

0r(fr) € afggle&é(ﬁT(G,fl), (B.2)

where

with Z( f;) defined below (TT)).
We can now use the stationarity, ergodicity, and moment results from Theorem [B.1] to estab-
lish existence, consistency and asymptotic normality of the MLE. For existence, we make the

following assumption.

ASSUMPTION B.3. (©®,B(®)) is a measurable space and © is a compact set. Furthermore,

h:F — F CRandp.: R" x A = R are continuously differentiable in their arguments.

In Section 2] we have opted for the unit scaling of the score in our model. We can easily generalize
all results below to the case of a non-constant scaling function S as long as we assume S : F — R
is sufficiently smooth. Theorem [B.4] below establishes the existence and measurability of the

MLE.

Theorem B.4. (Existence) Let Assumption|B.3|hold. Then there exists a.s. an § /B (©)-measurable
map éT(fl) : Q0 — O satisfying @I}for all T € N and every initialization f, € F.

To obtain consistency of the MLE, we impose conditions that ensure that the likelihood func-
tion satisfies a uniform law of large numbers for SE processes. We first ensures that the filter

£(0, f1) is SE and has Ny bounded moments by application of Theorem B.1

ASSUMPTION B.5. 3 (Ny, f) € [1,00) x F and a ©® C R34 such that

(i) sup(s nyesxa Els(f, ve, Xi; 8, )|V < oo,

and either



(ii) Sup(s,y x,80eRxYxxxBxA | B +A0s(f,y, X;8,A)/0f] <1,
or
(ii') Esupgece &;Wf(e) = Esupgee supy |B + A0s(f,yt, Xi; 6,A)/0f| < 1
and fu(y"™ ", X"71,6,f1) L ¢4 n,(0)V (t, /1) eNx F.

Next, we ensure a bounded expectation for the likelihood function. To do this, we use the
notion of ‘moment preserving map’; see [Blasques et al| (2014)for a detailed description of the
moment preserving properties of a wide catalogue of functions. This allows us to derive the
appropriate number of bounded moments of the likelihood function from the moments of its argu-

ments

DEFINITION B.6. (Moment Preserving Maps) A function H : RF* x @ — R*2 is said to be n/m-
moment preserving, denoted as H € Mg (n, m), if and only if Esupgcg |x:(0)|" < oo implies

Esupgee |H(x+(6); )™ < coff]

ASSUMPTION 1. Ny = min{Nogp,, Nog|z|} > 1, where log|Z| € Me(Ny, Niog|z|) and
logp. € Mg (N, Nlogpe), with N = min {Ny,Nx}, where Ny and N, denote the moments

of yy and Xy, respectively.

The moment N, in Assumption [I] corresponds to the number of moments of the likelihood
function. Rather than assuming N, > 1 as a high-level assumption, we follow [Blasques et al.
(2014) and define N, as a function of the score model constituents directly, thus obtaining a
set of low-level conditions for strong consistency. The requirements imposed in Assumption
[T] follow easily by application of a generalized Holder inequality to the likelihood expression
below . Note that N = min {Ny, Nm} follows directly by the fact that the argument
(ye — h(f1(0, f1)Wy, — X;3) of pe is linear in both 3, and X, and super [h(f)| < 1. The
current conditions extend those of Blasques et al.|(2014) by accounting for the presence of exoge-
nous variables X; in the model.

Theorem [B.7] now establishes the strong consistency of the MLE for the parameters of our

time-varying spatial score model if the data are SE.

Theorem B.7. (Consistency) Let {y; }scz and { X;}scz be SE sequences satisfying Ely;|Nv < oo
and E|X;|Ne < oo for some N, > 0 and N, > 0 and let Assumptions and hold.
Furthermore, let 0y € © be the unique maximizer of Lo (0) on the parameter space ©. Then the

MLE satisfies éT(fl) 2 00 as T — oo for every f1 € F.

The (k1 x 1)-vector x; satisfies E supgc g [x:(0)|" < oo ifits elements z;,; () satisfy Esupgeg |21,:(0)|" < oo,
i =1, ..., k1. The same element-wise definition applies when x.(0) is a matrix.

| n



Remark [B.8|below highlights that if the score s is uniformly bounded, we can change Assumption
in line with Remark [B.2]

REMARK B.8. We can substitute Assumption [B.5|in Theorem|B.7 by
(i) SUP(g x .y, X)eBxAxFxyxx 1S(f 0, X5 B, A)| < o0;

(ii) Elogsupgee ¢ ,(0) <0 and |B|] < 1.

Finally, we establish the asymptotic normality of the MLE. For this, we require the exis-
tence of a sufficient number of bounded moments for the likelihood function and its derivatives.
For notational simplicity, we define the function ¢; := q(f;(0, f1), v, Xi; 8, A) = log pe(y; —
h(f:(8, fi)Wy: — X18; \), as well as the cross-derivatives

3K1+K2+K38(f v, X8, A)
(K1,K2,K3) . —— 2
s\, (f7y7X557)\) T aleaBKza)\Kg

The (cross)-derivatives ¢(51:52:53) and (log | Z|) K1) are defined similarly. Assumptionnow

imposes sufficient moment conditions for the asymptotic normality of the MLE.
ASSUMPTION B.9. (i) s() € Me(N, N, ¢ &) € Me(N, N¥)), N := (N;, N,, N),
with N as defined in Assumption[I}

(ii) No > 2 Npr > 1, N\ > 0, and N > 0, with

1) (1) (1,0,0) A7(1)
e s min{Néo’l’o) ’ Nq(o’o’l)’ ]:Zl;)ngle 1’ ]qu 0) Nf (1)}7
N10g|Z|+Nf Ng ™ +Nf
(1,1,0) (1) (1,0,1) (1)
Ny = min Néo,z,o) 7 Nq(o,o,z) : Néo’l’l), Ng Ny : Nq Ny ,
Nq(1,1,o) +NJ(}) N(§1,o,1) +N}1)
(2,0,0) A7(1) (1,0,0) A7(2) (1) (2) (2) (1)
Ng™ Ny Ng Ny Niog |21V Niog 121N }
(2,0,0) (1) 7 A7(1,0,0) (2) 7 Ar(1) (2) ’ (2) (1)
2N, +Nf Ny +Nf Nlog|Z|+Nf 2N10g‘z‘+Nf
N = min {Ny, N, NOLO N©OODY
N](CQ) — min {Nj(cl) 7 NS(D,LO) : NS(O,O,l) , NS(0,2,0) : Ns(o,o,z) ’ Ns(0,1,1) :

Ns(l,O,O)N](cl) NS(ZO’O)N](CD Ngl,l,O)N}I) Ns(l,O,l)N](cl)
NS(LQO)-FN}D ’ 2]VS(Q,O,O) —I—N](cl) ’ NS(LLO)-i-NJ(cl) ’ Ns(l,(),l) —i—N}l) ’

Rather than assuming Ny > 2 and Np» > 1 directly as a high-level condition, we define
Ny and Ny explicitly in terms of their lower-level constituents. The moment conditions in As-

sumption extend those of [Blasques et al.| (2014) by allowing for exogenous regressors. The

6



expressions may seem complicated at first, but we show below that their verification is often
straightforward; see also Blasques et al.[|(2014) for the verification of similar moment conditions
in a wide range of observation-driven models.

The quantities N }1) and N }2) in Assumption correspond to the moments of the first and
second derivatives of the filter ft(B, f1) with respect to the parameter 6. Similarly, Ny and Ny»
denote the moments of the first and second derivatives of the likelihood function, respectively.

Theorem now establishes the asymptotic normality of the MLE. Here, int(®) denotes

the interior of ©.

Theorem B.10. (Asymptotic Normality) Let {y; }+cz and {X;}iez be SE sequences that satisfy
E|y|Nv < oo and E|X4|N= < oo for some N, > 0 and N, > 0 and let Assumptions

hold. Furthermore, let 0y € int(@) be the unique maximizer of L, (0) on ©. Then,
VT(Or(f1) — 00) 5 N(0,Z71(6).7 (00)I}(80)) as T — oo,

where J(0) := EL,(80)0}(00) " is the expected outer product of gradients and Z(6y) := EZ//(6,)

is the Fisher information matrix.

Theorem [T|now follows directly from the previous (more general) theorems as a special case.

B.3 Proofs of main theorems

The lines of proof adopted here closely follow the original lines of proof in Blasques et al.|(2014),
extended to the case of exogenous variables. For ease of reference and to make the paper self-

contained, we repeat the arguments in full.
Proof of Theorem|B.I} Define the norms || - ||® := supgee |- | and || - ”J(:)ff := Esupgee || - |-
Following [Straumann and Mikosch| (2006, Proposition 3.12), we have

s [y X0 1) = LX) 50
S

This follows directly from |Bougerol| (1993b, Theorem 3.1) in the context of the random sequence
{fe(ytt=t, X B OV, with elements f;(y' 1, X141 . ) taking values in the sepa-

rable Banach space Fg C (C(©, F),|| - |l@), with initialization 2 in C(®, F), where f2(0) =



f1V 6 € ©, and’]

f-t(yl:t,Xlzt’ ’fl(a) — ¢t(ﬁ(y1:t_1,X1:t_1, . f_le))?

— (b(ft(ylst—l’Xl:t—l, _7JF1®) T ¢ ) VteN,

where {¢;}+c7 is a stationary and ergodic (SE) sequence of stochastic recurrence equations ¢; :
=ExC(O,F) - C(O,F)Vt e Zas in Straumann and Mikosch| (2006, Proposition 3.12). Note
that with a slight abuse of notation we use ¢ both to denote the functional ¢ : C(®, F) x Y x X —
C(©®,F) as well as the function ¢ : F x Y x X x @ — F. Continuity of ¢ follows from
s € C(F x )Y x X x Bx A), where B is the domain of the regression parameters (3.

The assumption that {y; }+cz and { X, }+cz are SE and the continuity of ¢ together imply that
{1 }1ez is SE by Krengel (1985, Proposition 4.3). Condition C1 in Bougerol (1993b, Theorem
3.1) follows from Elog™ ||s(f®, y:, X¢; -, -)||® < oo since, by norm sub-additivity and positive

homogeneity, for any f© € C(©, F),

Elog™||6:(®)||® = Elog™ || + As(f®,ye, Xs; -, -) + Bf®||®

< sup (log* fu] +log" 4] +log" [B) +Elog" (721, Xes -, )[® + log* [1]® < .
S

because supgee |w| < 00, supgee |A| < 00, Supgee | B| < 0, and supgee || f€ | < oo hold
by compactness of © and continuity of f©, and Elog™ ||s(f®,y:, Xs; -, -)||® < oo holds by

assumption. This implies that fg € C(®, F) satisfies

Elog™ [[¢o(f®) — f®lle < El¢o(f®) — f®|® < E|lo(f€,ye. Xu5)|© + || £®)®

= Esup |[p(f©(8), y:, X¢, 0)| + sup | f© ()] < .
0cO 0cO

By a similar argument [E log™* SUD(3,\)eBx A Is(f1, e, X¢; B, A)| < oo implies Elog™ ||o(f©) —
O’ < oo

For any pair (f©, f'©) € C(@) x C(®), define

_ _ 9 (f©) — o (£ ©)lle
P T i P

Condition C2 in [Bougerol (1993b, Theorem 3.1) holds if Elogp; < 0. This is ensured by

*That (C(®, F), || - ||e) is a separable Banach space under compact ® follows from application of the Arzeldscoli
theorem to obtain completeness and the Stone-Weierstrass theorem for separability.



Elog||¢}||® < 0, with ¢,(8) as defined in (B.I)). It becomes apparent by noting that

6e(£©) — de(£©))1©

Elog p(¢:) = Elog  sup ) = ouf 0
ire—reiso  If° =12l
“Elog  sup  SPece [9(7(0).3 X1, 6) — 9(£(6). 1, X1, 6)
If@—F®|>0 supgeo | f(0) — 1/(0)]
<Elog sup SWPoce 9(0) suoce|/(6) — ['(0)
= el om0 suwpece 1£(8) — F/(O)

= Elog ||¢}||®

Also note that for the ¢ period composition of the stochastic recurrence equation, we have E log p(¢.0

..o¢1) < Elog Hé-:l p(¢) < 23:1 log ||<;_5;||6 < 0, where o denotes composition. As a re-
sult, { f;(, f1) }ten converges e.a.s. to an SE solution { f;(-) }sez in || - ||®-norm. Uniqueness and
e.a.s. convergence is obtained in|Straumann and Mikosch| (2006, Theorem 2.8).

Finally, we show that sup, Esupgce | fi(y"* ", X110, f1)|Vf < oo and also

Esupgee |fi(y" =, X171, 0)[Nr < oo, We have sup, Esupgeg | fi(y"* !, X171, 0, fi)[Vs
< ooif and only if sup, (E supgee iy, X1-1,0, Fo)l NN — sup, | )€, < oc.
Furthermore, for any f© € C(©, F), having || f;(-, f1) — f@H% < oo implies Hﬁ(,fl@)ﬂj?,f <
oo since continuity on the compact © implies supgeg | f(8)| < co. For f€ € C(®, F), we define
18, ., and X, such that f® = ¢(y, X, @, -) € C(®, F). Using similar arguments as above, we
can show that under the current assumptions 3 f©® € C(@®, F) satisfying ||¢(f®, ye, X¢; )H](?,f <

¢ < ocoand || f@ — f@HJ(?,f = |1 f® — &(f8,ys, Xs; )||%f < oo. From this, we obtain

Slz‘p”fﬂrl('v fle) - feH%f = Slz‘p ||¢(.ft(7f_1®)7yt7Xt7 ) - ¢(f*®7y*7X*a )H%f
< sup e feCs F2)syes X ) = 6(£2 96, Xis )R, +

sup [|#(£.2, yo, Xiei )[R, + sup [$(/2, s Xui )R,

o (B sup 170, 1) — 11 x sup [ALO-TE). 0. X120) = 0(72(0). . X 0) )
T 9cO ’ : 0cO (0, FP) — f2(0)|N

® ® 00
sup [|6(£.7, v, Xos )iy, + 117 Iy

- _ - 1/Ny
< sup (E sup | f(6, f) — £V x sup ¢;<0>Nf) +sup [o(£2, ur, Xi: )R, + 1CIR,-
t 0cO® 0cO t

Using the orthogonality condition in (iv'), we can write the expectation of the product as the



product of the expectations and continue

r e [SHS) ane) (C] (C] [SHS)
< sup (- J0) = £2US, - 19419, +sup (6072, 0, X )9, + 17°1%,

<[161R, x (sup /(- FP) — 1OIR,) + 0+ 1.

with ¢ = ”‘%Hz(?/f < 1 by condition (iv'), ¢ < oo, and f = ||f®@|| + ¢ Hf@ - f?”f?,f < 00. Asa

result we have the recursion sup; || fr41(-, f2) — f®|| <ée-sup, || fi(-, fO) — fQHNf +o+f.

Hence,
t—2 o _ 7 f— QZ

sup | fi(+, f2) = fOIR, <> (e &Y (F+¢)+ Tsup £ = FOIR, < 7 5+||f1@ IR, < oo
7=0

The same result holds using the uniform contraction in (iv) by taking a further supremum in ; and

X instead of the orthogonality condition. O

Proof of Theorem B.4} Assumptlonmlmphes that L7 (0, f1) = (1/T) 1 6:(6, f1) is a.s. con-

tinuous (a.s.c.) in @ € O through continuity (c.) of each

gt(07 f_l) = g(yh Xta f.t(yl:t_l? Xl:t_la f_17 0)7 0)

= logpe(Zi(fr) 'y — XeB3 M) — log | Zu(f2)]

ensured in turn by the differentiability of S, p. and h and the implied a.s.c. of

9log pe(Zy(fr(y** 1, X171 f1,0)) "y — X355 \)
of
Olog | Zu(fu(y™ Y, XML 1,0))]
af

v(.ﬁf(ylztilaXlztilvfla )ytaXtvﬂa )

in (f;(y"*1, X1 f1,0); \) and the resulting c. of f;(y¥*~1, X'*=1 f,.0) in 0 as a composi-
tion of ¢ c. maps. Together with the compactness of ® this implies by Weierstrass’ theorem that
the arg max set is non-empty a.s. and hence that O exists a.s. VT € N. Assumptionimplies

also by a similar argument that
£T(0’fl) £T(f1T( 1:t—1 Xlt 1 f ) 1.T XlT 0)

is continuous in (y57, X17) V @ € © and hence measurable w.r.t. the product Borel c-algebra

10



B()) ®B(X) that are, in turn, measurable maps w.r.t. F by Proposition 4.1.7 in Dudley (2002)ﬂ
The measurability of éT follows from |Foland (2009, p.24) and White (1994, Theorem 2.11) or
Gallant and White, (1988, Lemma 2.1, Theorem Z.Z)E] O

Proof of Theorem|B.7; We obtain éT( ) 23" @, from the uniform convergence of the criterion

function

sup |L7(0, f1) — Loo(0)] 30V fi € F as T — o0, (B.3)
6cO

and the identifiable uniqueness of the maximizer 6y € © introduced in|White|(1994),

sup  Loo(0) < Loo(0) Ve > 0; (B.4)
0:]|0—0¢||>¢

see for example [White| (1994, Theorem 3.4) or Theorem 3.3 in |Gallant and White| (1988) for
further details.

The uniform convergence is obtained by norm sub—additivityE]

sup [L7(0, f1) — Loo(0)] < sup [L7(0, f1) — L7(0)] + sup [L7(0) — Loo(0)],
) ) 9co

and then showing that the initialization effect vanishes asymptotically,

sup |ET(0, fl) — ET(G)‘ a;:;). 0 as T — o0, (B.5)
6coO

and for the second term applying the ergodic theorem for separable Banach spaces in [Ranga Rao
(1962), as in Straumann and Mikosch (2006, Theorem 2.7), to the sequence { L7 (+)} with elements
taking values in C(®, R) so that

sup |[L7(0) — Loo(0)] 230 where Loo(0) =EL(0)V 0 € O.
0cO

The criterion £7(0, f1) satisfies (B.5) if

sup |:(0, f1) — 6:(0)] “30 as t — oo.
0c®

“Dudley’s proposition states that the Borel c-algebra B(A x B) generated by the Tychonoff’s product topology
Taxs on the space A X B includes the product o-algebra B(A) ® B(B).

5The reference of Foland (2009) is used here to establish that a map into a product space is measurable if and only
if its projections are measurable.

L7 (@) denotes L1 (8, f1) with f(6, f1) replaced by its limit ().
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The continuity of p,, ensures that 4, (-, f1) = £(f;(y', X*, -, f1), ye, Xy, ) is continuous in (f(y*, X, -, f1), e, Xi).
Since all the assumptions of Theorem 1 are satisfied we know that there exists a unique SE se-

quence {f:(y", X*,-)) }1ez with elements taking values in C(©, F) such that

Su(g ‘(ft(ytiaXtilv flao)aytht) - (ft(ytiaXtilvg%ytht)‘ af). 07
€

and

sup E sup |ﬁ(yt_1,Xt_1,f1,0)Nf| <oo and Esup |ft(yt_1,Xt_1,0)|Nf < 00,
t 6O 0cO

with Ny > 1. Hence, follows by application of a continuous mapping theorem for ¢ :
C(®,F) = C(O,F).

The ULLN supgeg |£7(0) — E4:(8)] “3 0 as T — oo follows, under a moment bound
Esupgcg |6+(0)| < oo, by the SE nature of {/;};cz which is implied by continuity of ¢ on the
SE sequence { (y;, X¢, f:(y'~", X*~1,)) }sez and Proposition 4.3 in Krengel (1985). The moment

bound E supgcg [¢+(0)| < oo can be established as follows. First note that

E sup [6:(8)| = sup E|log pe(y: — h(fi(y' ™ X', 0))Wyr1 — Xi8)
0coe 0cO
—logdetZ(fi(y' 1, X1, 0))|

< gugEl log pe(ye — h(fi(y' =, X171, 0)Wy—1 — X, 8)|
€

— sup E|logdetZ(fi(y", X', 0))| < oo,
0cO

then the bounded first moment for the likelihood is implied by having

Ely: |V <00, E[X;MX <00, and SugE\ﬂ(ytfl,thl,B)]Nf < 00.
€

since then

sup E|log detZ(JEt(?Jt_ly X*1,0))| < o0,
0cO

sup E|log pe(ys — h(f:(8))Wyi—1 — XiB)| < 0,
S

because of the moment preserving properties of log |Z| and log p. with with Ny, |7 > 1 and
Nogp. = 1 by assumption.
Finally, the identifiable uniqueness (see e.g. White| (1994)) of 8y € © in (B.4) follows from

the assumed uniqueness, the compactness of ®, and the continuity of the limit E¢;(0) in 8 € ©
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which is implied by the continuity of L7 in 8 € ® VT € N and the uniform convergence in
(B.3). O]

Proof of Theorem|[B.10; As the likelihood and its derivatives depend on the derivatives of ft(a 1)
with respect to 8, we introduce the notation fgo””") as the vector containing f;(6, f1) and its deriva-
tives up to order m, with initial condition f(ozm). We obtain the desired result from: (i) the strong
consistency of 0r 23 0, € int(@®); (ii) the a.s. twice continuous differentiability of L7 (8, f1) in

0 € O; (iii) the asymptotic normality of the score
- . d ~ ~
VTLy (80, 7)) 4 N(0,7(00),  T(00) =E(£,(60),(600)T);  (B.6)
(iv) the uniform convergence of the likelihood’s second derivative,

sup <o, 7172 - £ (@) 3 o; (B.7)
and finally, (v) the non-singularity of the limit £_(8) = E£”(0) = Z(8). See e.g. in White (1994,
Theorem 6.2) for further details.

The consistency condition éT %0, € int(®) in (i) follows under the maintained assump-
tions from Theorem [B.7| and the additional assumption in Theorem that @y € int(®). The
smoothness condition in (ii) follows immediately from Assumption and the likelihood expres-
sions in Appendix [B.4]

The asymptotic normality of the score in (B.9) follows by Theorem 18.10[iv] in[van der Vaart
(2000) by showing that

1£5(80, FM) — £4(80) ]| “%7 0 as T — oo, (B.8)

plus a CLT result for £/.(6). Note that from (B8] we obtain that v/T'|| L% (6o, f §“1” ) =L (60) || =3
0 as T' — oo. The desired CLT result follows by an application of the CLT for SE martingales in
Billingsley (1961)),

VT Ly (80) % N(0,7(8o)) as T — oo, (B.9)

where 7 (0o) = E(/, (190)@1’t (60)") < oo, where finite (co)variances follow from the assumption

Ny > 2 in Assumption [B.9]and the expressions for the likelihood in Appendix
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To establish the e.a.s. convergence in (B.8)), we use the e.a.s. convergence

|fely" = X 60, f1) — fi(y' T X, 00)] 50, (B.10)
and
~(1 g g -(0: ~(1 S S e.a.s.
Hfi )(yl.t l’Xl.t 1’00’1_»50 1)) _ f,E )(yl.t 17X1.t 1700)” as. (B.11)

The e.a.s. convergence in (B.10) is obtained directly by application of Theorem 1 under the main-
tained assumptions. The e.a.s. convergence in (B.11) is obtained by the same argument as in the
proof of Theorem 1 since: (a) the expressions for the derivative process {},(51)} in Appendix

show that the contraction condition
Elog sup ¢} 1(8) <0
0c®

for the recursion of the filter { f;} is the same as the contraction condition for the derivative process
=1 L .
{ fl(t )}; and (b) the expressions in Appendix also reveal that the counterpart of the moment

condition

Elog™ sup |s(f1,yt,Xt;B,/\)] < 00,
(BA\)EBXA

used in Theorem 1 for the filtered process { ft} is implied by the condition that

min{ Ny, Ny, N0 N0 5

as imposed in Assumption [B.9]

From the differentiability of

/ £\ : 4+ %(0:1 v g —(0:
7, fgo 1)) —0(0,y", X, f,E )(yl.t L xlt=1 g fgo 1)))

n in:l)(th_l,Xlzt_l, 0, J;go:l)) and the convexity of F, we use the mean-value theorem to
obtain
Addy o1 y1t (01
2(0:1 0£ (y aX ) f )
125 (80, 11 = £ (80)]| < Y T
j=1 J (B.12)

~(0:1 g g —(0: ~(0:1 g g
X |FD @t x et gy, 7y - FO o1 -1 gy

1) ~(0:1)

where d) denotes the dimension of A, and }got denotes the j-th element of }iozl), and f is
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on the segment connecting fg-?;l)(ylztfl, XE=19,, }50:1)) and }ﬁl)(yl’t*l, X1t=1.94). Note

that JN‘EO:I) € R**9 because it contains ft € R (the first element) as well as ]"El) € R3tda

(the derivatives with respect to w, A, B, and \). Using the expressions of the likelihood and
its derivatives in Appendix the moment bounds and the moment preserving properties in

Assumption [B.9] and the expressions in Appendix [B.4]shows that

~(0:1)

‘8@’(y1:t,X1:t, 7 )/af]‘ =0,(1) Vj=1,...,4+d,.

The strong convergence in is now ensured by

4+dA
1€ (80, F) = £5(80)] = S~ 0p(1)0c.as(1) = 0c.aus.(1). (B.13)
=1

The proof of the uniform convergence in (B.7) is similar to that of Theorem [B.4] We note

sup || L7(0, f1) — L2,(0)]| < sup [|L7(8, f1) — LT7(0)|| + sup ||L7(0) — L5 (0)].  (B.14)
0cO® 0cO® 0cO

To prove that the first term vanishes a.s., we show that

sup [|/(8, f1) — £/(0)| 30 as t — oc.
0cO

The differentiability of §, §’, p, and S from Assumption[B.5|ensure that
- (02) ) 1yt il
g?('?fl) :gll(yta.ft (yl't 17X1't 1)'7f0:2>7')

is continuous in (y;, },50:2) (yht=t XLl f0.5)). Again, we note that the proof of Theorem
can be easily adapted to show that there exists a unique SE sequence {}§0:2)(yt*1, X Vher

such that

~(0:2 g g - ~(0:2 _ _ a.s.
gugH(yt,f,E M X0, Foo)) — (o P (0, X, 0] 43 0,
S

and satisfying, for for Ny > 1,

~(0:2) g e I
SupEsup H.ft (yl.t 17Xl't 1797f0:2)HNf < 00,
t 6cO
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and also

~(0:2) _ _
Esup [|f, ("1 X7 0)|V < o,
0cO®

because (a) the expressions for the derivative process {},(51)} in Appendix show that the con-

traction condition

Elog sup ¢} 1(8) <0
0coO

for the recursion of the filter { ft} is the same as the contraction condition for the second derivative
~(2 . . .

process { fg )}; and (b) the expressions in Appendix show also that the counterpart of the

moment condition

]ElOg+ sup ’S(fluyhXt;BvA)’ < o0,
(B,\)eBxA

used in Theorem 1 for the filtered process { ft}, is implied by the condition that

NS(LO’O)N](cl)

’ Ns(l,O,O) —i—N}l) ’
N§2’0’0)N](c1) NS(I,I,O)N]EI) NS(LOJ)N}I) }
>0
1) ’

aNP0 4 N T NO L N NOD 4 N

min {N](cl) , NOLO) | N(001)  pr(020)  pr(002)  pr(OL1)

imposed in Assumption By application of a continuous mapping theorem for ¢ : C(© x
F0:2)) 5 R we thus conclude that the first term in converges to 0 a.s..
The second term in (B.14) converges under a bound E supgeg ||£//(8)]| < oo by the SE nature

of {L£/.}1cz. The latter is implied by continuity of ¢’ on the SE sequence

~(0:2)
t

{(ytht7f (ylztilaXl:tilv'))}tEZ‘

The moment bound E supgeg ||£/(8)|| < oo follows from Ny > 1 in Assumption and the
expressions in Appendix Finally, the non-singularity of the limit £”_(8) = E£/(8) = Z(8)
in (v) below equation is implied by the uniqueness of 8 as a maximum of £ (0) in ®. [
B.4 Derivatives of the likelihood function

We take first derivatives of the likelihood with respect to all static parameters 8 = (w, A, B, 3, 0%)':

oy (0t Oty DLy Oty Oty '
00

Let 6,,, denote the mth element of 8, p; = log pe(y:—h(f)Wy:—X:5), and §, = log |Z(f:) .
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We can decompose the derivatives of the likelihood with respect to each 6, into two parts:

o _ O(pr +1loggy) Of | Op
0, aft 0, 00,
ofe | Ot
Vi gt e (B.15)

because g, does not depend on any of the parameters directly, only through f;. For 6,,, € {w, A, B}
the second term is zero, because these parameters enter the likelihood only through f;.

All partial derivatives contain the term 0 f;/06,, given by

gef; = 8271 (w+ Asi—1 + Bfi—1) (B.16)
_ 880“; + aaeist‘l + A?j{i : aaf,;ml + Aa;;ml + gﬂi fe—1 + B%’Zml (B.17)
= 885; + geivtl + AV, - aafg;nl + Aaavezl + é?;jn Jr1+ Baaj;t:(B.lS)
= ;0‘; + ge‘ivtl + A88V9:1 + geifu + (AVi_, + B)%f;: (B.19)

We want the matrix of second derivatives of the likelihood function, i.e.
024,
0000’
We take another derivative of with respect to 6,:
o, Ofe Ofi OV Of; L, Pfiy + Py (B.20)

00,,00, ' 06, 00,, 00, 06,, 00,0,  00,,00,
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The second derivative process takes the form

0%f, DA OVi, Ofi1  OA OV,
90,00, 00, Ofi_1 00, = 06, 06,
0A OV_10fi—1 _}_Aantfl Oft—10fi—1 4 A O*Vi1 O0fi1
80, Dfi1 00, afz, 00, 00, | 0fi 100, 00,
OVi_1 0%fii1 OA OV, AaQthl 1A O*Vi_1 Ofia
Ofi_1 00,00, 06, 00, 00,00, 00m0fi—1 00,

OB 0fi-1 | 0B Ofi B % fia

" 00, 00, 90, 06, © 00,,00, B21)
. 0A / aft—l 0A 8Vt_1
00, V00, 06, 06,
04 o,  0Ofia no 0fim10fia OVi_10fi—1
o0, Ve e TAVE a0 e, Y400, o0,
LAY O?fii1 OA OV A32Vt—1 LA O*Vi_1 Ofia

196,00, | 90, 00, 00,00,  “00m0f 1 00,
OB 0fi-1 | 0B dfi 4B % fi1
90, 00, 90, 00 90,00,

18



Appendix C Additional tables and figures

Table C.1: Key policy events during the Eurozone crisis

Date Event Source

Oct. 18,2009  Greece announces doubling of budget deficit The Guardian®
Mar. 3, 2010 EU offers financial help to Greece ECB?

Dec. 7, 2010 Ireland is bailed out by EU and IMF ECB?

Dec. 22,2011 ECB launches the first Longer-Term Refinancing Operation (LTRO) ECB?

Mar. 1, 2012 ECB launches the second LTRO ECB?

Jul. 26,2012 M. Draghi: “[T]he ECB is ready to do whatever it takes to preserve the euro.” ECB®

Oct. 8, 2012 European Stability Mechanism (ESM) is inaugurated ESM*

Sep. 12,2013  European Parliament approves new unified bank supervision system ECB?

Thttp://www.theguardian.com/business/2012/mar/09/greek-debt-crisis-timeline
2http://www.ecb.europa.eu/ecb/html/crisis.de.html
3http://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html
4http://www.esm.europa.eu/press/releases/20121008_esm-is-inaugurated.htm
All retrieved on June 19, 2014.
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o elp offer to Ireland bailed out ESM
Greece Mario Draghi: inaugurated
,Whatever it takes”
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Figure C.1: Filtered spatial dependence parameters obtained from the full model, together with
key policy events from Table [C.1]
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Figure C.2: Filtered spatial parameter obtained from the time-varying spatial score model with
time-varying volatilities, using absolute CDS spread changes as dependent variable.
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Table C.2: Cross-correlation matrices: raw data and full model residuals

Correlation matrix of raw CDS change data

Belgium France Germany Ireland Italy Netherlands Portugal  Spain

Belgium 1.000  0.724 0.697 0.630  0.738 0.737 0.643  0.707
France 1.000 0.724 0.581  0.655 0.678 0.581  0.657
Germany 1.000 0.553  0.609 0.685 0.534  0.577
Ireland 1.000  0.718 0.575 0.724  0.685
Italy 1.000 0.654 0.740  0.847
Netherlands 1.000 0.566  0.620
Portugal 1.000  0.742
Spain 1.000

Correlation matrix of residuals

Belgium France Germany Ireland Italy Netherlands Portugal  Spain

Belgium 1.000 0.118 0.146  -0.089  0.204 0.038 0.132  0.199
France 1.000 0.201 -0.136  -0.159 0.032 -0.035 -0.020
Germany 1.000 -0.270 -0.453 -0.002 -0.087 -0.223
Ireland 1.000 0.174 -0.039 0.222  0.038
Italy 1.000 -0.003 0305  0.577
Netherlands 1.000 -0.034  -0.064
Portugal 1.000  0.041
Spain 1.000
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