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Appendix B Proofs

In this web appendix we establish the existence, strong consistency and asymptotic normality

of the MLE of the static parameters θ that define the stochastic properties of the spatial score

model from Section 2. We first present the results in a more general setting than the spatial score

model, thus extending the results in Blasques et al. (2014) to allow for the presence of exogenous

regressors.

B.1 Stochastic properties of the filtered spatial dependence parameter

To establish the consistency and asymptotic normality of the MLE, we first study the stochastic

properties of the filtered parameter ft defined through equations (8), (11), and (12). The filtered fts

directly determine the time-varying spatial parameter ρt = h(ft). Understanding the properties of

the filtered parameters is key to understanding the stochastic properties of the likelihood function

over the parameter space Θ.

We first introduce some additional notation. Let the T -period sequences {yt(ω)}Tt=1 and

{Xt(ω)}Tt=1 be subsets of the realized path of n and k-variate stochastic sequences y(ω) :=

{yt(ω)}t∈Z and X(ω) := {Xt(ω)}t∈Z, for some ω in the event space Ω. In particular,1 we let

1The random sequences y and X are thus F/B(Y∞) and F/B(X∞)-measurable mappings y : Ω → Y∞ ⊆ Rn∞
and X : Ω → X∞ ⊆ Rk∞ where Rn∞ := ×t=∞t=−∞Rn and Rk∞ := ×t=∞t=−∞Rk denote Cartesian products of infinite
copies of Rn and Rk respectively, and Y∞ = ×t=∞t=−∞Y and X∞ = ×t=∞t=−∞X with B(Y∞) ≡ B(Rn∞) ∩ Y∞ and
B(X∞) ≡ B(Rk∞) ∩ X∞; see (Billingsley, 1995, p.159). Here, B(Rn∞) and B(Rk∞) denote the Borel σ-algebras
generated by the finite dimensional product cylinders of Rn∞ and Rk∞ respectively, F denotes a σ-field defined on the
event space Ω, and together with the probability measure P0 on F, the triplet (Ω,F,P0) denotes the common underlying
complete probability space of interest.

1



yt(ω) ∈ Y ⊆ Rnand Xt(ω) ∈ X ⊆ Rk for all (ω, t) ∈ Ω × Z. For every ω ∈ Ω, the stochas-

tic sequences y(ω) and X(ω) thus live on the spaces (Y∞,B(Y∞),Py0) and (X∞,B(X∞),PX0 )

where the probability measures Py0 are PX0 are defined over the elements of the Borel σ-algebras

B(Y∞) and B(X∞). We write the filtered time-varying parameter as f̃t to distinguish it from the

true time-varying parameter ft. More precisely, we write the filtered time-varying parameter as

{f̃t(y1:t−1, X1:t−1;θ, f̄1)}t∈N, which depends naturally on the initialization f̄1 ∈ F ⊆ R, the past

data y1:t−1 = {ys}t−1
s=1 and X1:t−1 = {Xs}t−1

s=1, and the parameter vector θ ∈ Θ. For notational

simplicity we often omit the dependence on the data and write {f̃t(θ, f̄1)}t∈N instead.

We can now rewrite the score update in (8) as

f̃t+1(θ, f̄1) = ω +A s
(
f̃t(θ, f̄1), yt, Xt;β, λ

)
+Bf̃t(θ, f̄1) ∀ t ∈ N,

where s(f̃t(θ, f̄1), yt, Xt;β, λ) denotes the unit scaled score function. To shorten the notation, we

define the random function

φt
(
f̃t(θ, f̄1);θ

)
:= φ

(
f̃t(θ, f̄1), yt, Xt;θ

)
:= ω +A s(ft(θ, f̄1), yt, Xt;β, λ) +Bft(θ, f̄1),

as well as the supremum of its derivative,

φ̄′t(θ) := sup
f∈F

∣∣∣A ∂s(f, yt, Xt;β, λ)

∂f
+B

∣∣∣. (B.1)

Note that φ̄t(θ) is also a random variable due to its dependence on (yt, Xt).

The following theorem states sufficient conditions for the stochastic sequence {f̃t(θ, f̄1)}t∈N
initialized at f̄1 ∈ F to converge almost surely, uniformly in θ ∈ Θ, and exponentially fast

to a limit stationary and ergodic (SE) sequence {f̃t(θ)}t∈Z that has Nf bounded moments. We

repeatedly make use of this notion of uniform exponentially fast almost sure convergence (e.a.s.),

which means that there exists a γ > 1 such that

sup
θ∈Θ

γt
∣∣∣f̃t(y1:t−1, X1:t−1,θ, f̄1

)
− f̃t

(
yt−1, Xt−1,θ

)∣∣∣ a.s.→ 0 as t→∞;

see Straumann and Mikosch (2006). Note that the limit sequence starts in the infinite past and

hence depends on the infinite past data yt−1 := {ys}t−1
s=−∞ and Xt−1 := {Xs}t−1

s=−∞, i.e.,

{f̃t(θ)}t∈Z ≡ {f̃t(yt−1, Xt−1;θ)}t∈Z. We thus establish the convergence of the sequence of
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random functions {f̃t(·, f̄1)}t∈N defined on Θ with random elements taking values in the Banach

space (C(Θ,F), ‖ · ‖Θ) for every t ∈ N, to an SE limit {f̃t(·)}t∈Z with elements taking values in

(C(Θ), ‖ · ‖Θ), where ‖ · ‖Θ denotes the supremum norm on Θ. We have the following result.

Theorem B.1. Let F be convex, Θ be compact, {yt}t∈Z and {Xt}t∈Z be SE, s ∈ C(F × Y ×

X × B × Λ) and assume there exists a non-random f̄1 ∈ F such that

(i) E log+ sup(β,λ)∈B×Λ |s(f̄1, yt, Xt;β, λ)| <∞;

(ii) E log supθ∈Θ φ̄′1(θ) < 0.

Then {f̃t(θ, f̄1)}t∈N converges e.a.s. to the unique limit SE process {f̃t(θ)}t∈Z.

If furthermore ∃ Nf ≥ 1 such that

(iii) E sup(β,λ)∈B×Λ |s(f̄1, yt, Xt;β, λ)|Nf <∞;

and either

(iv) sup(β,λ)∈B×Λ |s(f, y,X;β, λ)− s(f ′, X, f ;β, λ)| < |f − f ′| ∀ (f, f ′, y,X) ∈ F ×F ×

Y × X ;

or

(iv′) E supθ∈Θ φ̄′1(θ)Nf < 1 and f̃t(θ, f̄1) ⊥ φ̄′t(θ) ∀ (t, f̄1) ∈ N × F , where ⊥ denotes

independence;

then both {f̃t(θ, f̄1)}t∈N and the limit SE process {f̃t(θ)}t∈Z have Nf bounded moments, i.e.,

supt E supθ∈Θ |f̃t(θ, f̄1)|Nf <∞ and E supθ∈Θ |f̃t(θ)|Nf <∞.

The first claim of Theorem 1 makes use of the conditions in Bougerol (1993a). Condition

(i) requires the existence of an arbitrarily small moment for the score, and condition (ii) requires

the spatial score update to be contracting on average. The uniqueness of the SE limit follows

from Straumann and Mikosch (2006). The second claim of Theorem B.1 uses stricter moment

conditions and contraction conditions to obtain bounded moments of higher order for the filtered

sequence. This constitutes an extension of Proposition 1 in Blasques et al. (2014) to the spatial

score setting with exogenous random variablesXt as well as vector and matrix arguments. Remark

B.2 below highlights that in the special case where the score is uniformly bounded, then the filter

has infinitely many bounded moments under simpler conditions.

REMARK B.2. Let |B| < 1. If s̄ := sup(β,λ,f,y,X)∈B×F×Y×X |s(f, y,X;β, λ)| <∞, then

supt E supθ∈Θ |f̃t(θ, f̄1)|Nf <∞ and E supθ∈Θ |f̃t(θ)|Nf <∞ hold for every Nf ≥ 1.

The proof of this statement follows immediately by noting that |f̃t+1| ≤
∑t−2

j=0 |B|j(|ω|+ |A| s̄)+

|Bt−1f̄1| <∞.
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B.2 Asymptotic properties of the maximum likelihood estimator

The observation-driven structure of the time-varying spatial lag model allows us to perform max-

imum likelihood (ML) estimation in a straightforward way. Following equation (10), we define

the ML estimator (MLE) of the static parameter vector θ as an element of the arg max set of the

sample log likelihood function LT (θ, f̄1),

θ̂T (f̄1) ∈ arg max
θ∈Θ
LT (θ, f̄1), (B.2)

where

LT (θ, f̄1) =
1

T

T∑
t=1

`t(θ, f̄1)

=
1

T

T∑
t=1

log pe

(
yt − h

(
(f̃t(θ, f̄1)

)
Wyt −Xtβ ; λ

)
− log |Z

(
f̃t(θ, f̄1)

)
|.

with Z(ft) defined below (11).

We can now use the stationarity, ergodicity, and moment results from Theorem B.1 to estab-

lish existence, consistency and asymptotic normality of the MLE. For existence, we make the

following assumption.

ASSUMPTION B.3. (Θ,B(Θ)) is a measurable space and Θ is a compact set. Furthermore,

h : F → F ⊆ R and pe : Rn × Λ→ R are continuously differentiable in their arguments.

In Section 2, we have opted for the unit scaling of the score in our model. We can easily generalize

all results below to the case of a non-constant scaling function S as long as we assume S : F → R

is sufficiently smooth. Theorem B.4 below establishes the existence and measurability of the

MLE.

Theorem B.4. (Existence) Let Assumption B.3 hold. Then there exists a.s. an F/B(Θ)-measurable

map θ̂T (f̄1) : Ω→ Θ satisfying (B.2) for all T ∈ N and every initialization f̄1 ∈ F .

To obtain consistency of the MLE, we impose conditions that ensure that the likelihood func-

tion satisfies a uniform law of large numbers for SE processes. We first ensures that the filter

f̃(θ, f̄1) is SE and has Nf bounded moments by application of Theorem B.1.

ASSUMPTION B.5. ∃ (Nf , f) ∈ [1,∞)×F and a Θ ⊂ R3+dλ such that

(i) sup(β,λ)∈B×Λ E|s(f, yt, Xt;β, λ)|Nf <∞,

and either
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(ii) sup(f,y,X,β,λ)∈R×Y×X×B×Λ |B +A∂s(f, y,X;β, λ)/∂f | < 1,

or

(ii′) E supθ∈Θ φ̄′t,Nf (θ) = E supθ∈Θ supf |B +A∂s(f, yt, Xt;β, λ)/∂f | < 1

and f̃t(y
t−1, Xt−1,θ, f̄1) ⊥ φ̄′t+1,Nf

(θ) ∀ (t, f̄1) ∈ N×F .

Next, we ensure a bounded expectation for the likelihood function. To do this, we use the

notion of ‘moment preserving map’; see Blasques et al. (2014)for a detailed description of the

moment preserving properties of a wide catalogue of functions. This allows us to derive the

appropriate number of bounded moments of the likelihood function from the moments of its argu-

ments

DEFINITION B.6. (Moment Preserving Maps) A function H : Rk1 ×Θ→ Rk2 is said to be n/m-

moment preserving, denoted as H ∈ MΘ(n,m), if and only if E supθ∈Θ |xt(θ)|n < ∞ implies

E supθ∈Θ |H(xt(θ);θ)|m <∞.2

ASSUMPTION 1. N` = min{Nlog pe , Nlog |Z|} ≥ 1, where log |Z| ∈ MΘ(Nf , Nlog |Z|) and

log pe ∈ MΘ

(
N,Nlog pe

)
, with N = min

{
Ny, Nx

}
, where Ny and Nx denote the moments

of yt and Xt, respectively.

The moment N` in Assumption 1 corresponds to the number of moments of the likelihood

function. Rather than assuming N` ≥ 1 as a high-level assumption, we follow Blasques et al.

(2014) and define N` as a function of the score model constituents directly, thus obtaining a

set of low-level conditions for strong consistency. The requirements imposed in Assumption

1 follow easily by application of a generalized Holder inequality to the likelihood expression

below (B.2). Note that N = min
{
Ny, Nx

}
follows directly by the fact that the argument

(yt − h(f̃t(θ, f̄1)Wyt − Xtβ) of pe is linear in both yt and Xt, and supf∈F |h(f)| ≤ 1. The

current conditions extend those of Blasques et al. (2014) by accounting for the presence of exoge-

nous variables Xt in the model.

Theorem B.7 now establishes the strong consistency of the MLE for the parameters of our

time-varying spatial score model if the data are SE.

Theorem B.7. (Consistency) Let {yt}t∈Z and {Xt}t∈Z be SE sequences satisfying E|yt|Ny <∞

and E|Xt|Nx < ∞ for some Ny > 0 and Nx > 0 and let Assumptions B.3, B.5, and 1 hold.

Furthermore, let θ0 ∈ Θ be the unique maximizer of L∞(θ) on the parameter space Θ. Then the

MLE satisfies θ̂T (f̄1)
a.s.→ θ0 as T →∞ for every f̄1 ∈ F .

2The (k1×1)-vector xt satisfies E supθ∈Θ |xt(θ)|n <∞ if its elements xi,t(θ) satisfy E supθ∈Θ |xi,t(θ)|n <∞,
i = 1, ..., k1. The same element-wise definition applies when xt(θ) is a matrix.
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Remark B.8 below highlights that if the score s is uniformly bounded, we can change Assumption

B.5 in line with Remark B.2.

REMARK B.8. We can substitute Assumption B.5 in Theorem B.7 by

(i) sup(β,λ,f,y,X)∈B×Λ×F×Y×X |s(f, y,X;β, λ)| <∞;

(ii) E log supθ∈Θ φ̄′1,1(θ) < 0 and |B| < 1.

Finally, we establish the asymptotic normality of the MLE. For this, we require the exis-

tence of a sufficient number of bounded moments for the likelihood function and its derivatives.

For notational simplicity, we define the function qt := q(f̃t(θ, f̄1), yt, Xt;β, λ) := log pe(yt −

h(f̃t(θ, f̄1)Wyt −Xtβ;λ), as well as the cross-derivatives

s(K1,K2,K3)(f, y,X;β, λ) :=
∂K1+K2+K3s(f, y,X;β, λ)

∂fK1∂βK2∂λK3
.

The (cross)-derivatives q(K1,K2,K3) and (log |Z|)(K1) are defined similarly. Assumption B.9 now

imposes sufficient moment conditions for the asymptotic normality of the MLE.

ASSUMPTION B.9. (i) s(K) ∈MΘ(N , N
(K)
s ), q(K′) ∈MΘ(N,N

(K′)
q ),N := (Nf , Ny, Nx),

with N as defined in Assumption 1;

(ii) N`′ ≥ 2, N`′′ ≥ 1, N (1)
f > 0, and N (2)

f > 0, with

N`′ = min

{
N (0,1,0)
q , N (0,0,1)

q ,
N

(1)
log |Z|N

(1)
f

N
(1)
log |Z| +N

(1)
f

,
N

(1,0,0)
q N

(1)
f

N
(1,0,0)
q +N

(1)
f

}
,

N`′′ = min

{
N (0,2,0)
q , N (0,0,2)

q , N (0,1,1)
q ,

N
(1,1,0)
q N

(1)
f

N
(1,1,0)
q +N

(1)
f

,
N

(1,0,1)
q N

(1)
f

N
(1,0,1)
q +N

(1)
f

,

N
(2,0,0)
q N

(1)
f

2N
(2,0,0)
q +N

(1)
f

,
N

(1,0,0)
q N

(2)
f

N
(1,0,0)
q +N

(2)
f

,
N

(1)
log |Z|N

(2)
f

N
(1)
log |Z| +N

(2)
f

,
N

(2)
log |Z|N

(1)
f

2N
(2)
log |Z| +N

(1)
f

}
,

N
(1)
f = min

{
Nf , Ns, N

(0,1,0)
s , N (0,0,1)

s

}
,

N
(2)
f = min

{
N

(1)
f , N (0,1,0)

s , N (0,0,1)
s , N (0,2,0)

s , N (0,0,2)
s , N (0,1,1)

s ,

N
(1,0,0)
s N

(1)
f

N
(1,0,0)
s +N

(1)
f

,
N

(2,0,0)
s N

(1)
f

2N
(2,0,0)
s +N

(1)
f

,
N

(1,1,0)
s N

(1)
f

N
(1,1,0)
s +N

(1)
f

,
N

(1,0,1)
s N

(1)
f

N
(1,0,1)
s +N

(1)
f

}
.

Rather than assuming N`′ ≥ 2 and N`′′ ≥ 1 directly as a high-level condition, we define

N`′ and N`′′ explicitly in terms of their lower-level constituents. The moment conditions in As-

sumption B.9 extend those of Blasques et al. (2014) by allowing for exogenous regressors. The
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expressions may seem complicated at first, but we show below that their verification is often

straightforward; see also Blasques et al. (2014) for the verification of similar moment conditions

in a wide range of observation-driven models.

The quantities N (1)
f and N (2)

f in Assumption B.9 correspond to the moments of the first and

second derivatives of the filter f̃t(θ, f̄1) with respect to the parameter θ. Similarly, N`′ and N`′′

denote the moments of the first and second derivatives of the likelihood function, respectively.

Theorem B.10 now establishes the asymptotic normality of the MLE. Here, int(Θ) denotes

the interior of Θ.

Theorem B.10. (Asymptotic Normality) Let {yt}t∈Z and {Xt}t∈Z be SE sequences that satisfy

E|yt|Ny < ∞ and E|Xt|Nx < ∞ for some Ny > 0 and Nx > 0 and let Assumptions B.3–B.9

hold. Furthermore, let θ0 ∈ int(Θ) be the unique maximizer of L∞(θ) on Θ. Then,

√
T (θ̂T (f̄1)− θ0)

d→ N
(
0, I−1(θ0)J (θ0)I−1(θ0)

)
as T →∞,

whereJ (θ0) := E˜̀′
t(θ0)˜̀′

t(θ0)> is the expected outer product of gradients and I(θ0) := E˜̀′′
t (θ0)

is the Fisher information matrix.

Theorem 1 now follows directly from the previous (more general) theorems as a special case.

B.3 Proofs of main theorems

The lines of proof adopted here closely follow the original lines of proof in Blasques et al. (2014),

extended to the case of exogenous variables. For ease of reference and to make the paper self-

contained, we repeat the arguments in full.

Proof of Theorem B.1: Define the norms ‖ · ‖Θ := supθ∈Θ | · | and ‖ · ‖ΘNf := E supθ∈Θ ‖ · ‖Nf .

Following Straumann and Mikosch (2006, Proposition 3.12), we have

sup
θ∈Θ
|f̃t(y1:t−1, X1:t−1,θ, f̄1)− f̃t(yt−1, Xt−1,θ)| e.a.s.→ 0.

This follows directly from Bougerol (1993b, Theorem 3.1) in the context of the random sequence

{f̃t(y1:t−1, X1:t−1, ·, f̄Θ1 )}t∈N with elements f̃t(y1:t−1, X1:t−1, ·, f̄Θ1 ) taking values in the sepa-

rable Banach space FΘ ⊆ (C(Θ,F), ‖ · ‖Θ), with initialization f̄Θ1 in C(Θ,F), where f̄Θ1 (θ) =
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f̄1 ∀ θ ∈ Θ, and3

f̃t(y
1:t, X1:t, ·, f̄Θ1 ) = φt

(
f̃t(y

1:t−1, X1:t−1, ·, f̄Θ1 )
)
,

:= φ
(
f̃t(y

1:t−1, X1:t−1, · , f̄Θ1 ) , yt, Xt; ·
)
∀ t ∈ N,

where {φt}t∈Z is a stationary and ergodic (SE) sequence of stochastic recurrence equations φt :

Ξ× C(Θ,F)→ C(Θ,F) ∀ t ∈ Ξ as in Straumann and Mikosch (2006, Proposition 3.12). Note

that with a slight abuse of notation we use φ both to denote the functional φ : C(Θ,F)×Y×X →

C(Θ,F) as well as the function φ : F × Y × X × Θ → F . Continuity of φ follows from

s ∈ C(F × Y × X × B × Λ), where B is the domain of the regression parameters β.

The assumption that {yt}t∈Z and {Xt}t∈Z are SE and the continuity of φ together imply that

{φt}t∈Z is SE by Krengel (1985, Proposition 4.3). Condition C1 in Bougerol (1993b, Theorem

3.1) follows from E log+ ‖s(fΘ, yt, Xt; · , · )‖Θ <∞ since, by norm sub-additivity and positive

homogeneity, for any fΘ ∈ C(Θ,F),

E log+
∥∥φt(fΘ)

∥∥Θ = E log+
∥∥ω +As(fΘ, yt, Xt; · , · ) +BfΘ‖Θ

≤ sup
θ∈Θ

(
log+ |ω|+ log+ |A|+ log+ |B|

)
+ E log+ ‖s(fΘ, yt, Xt; · , · )‖Θ + log+ ‖fΘ‖Θ <∞,

because supθ∈Θ |ω| < ∞, supθ∈Θ |A| < ∞, supθ∈Θ |B| < ∞, and supθ∈Θ ‖fΘ‖Θ < ∞ hold

by compactness of Θ and continuity of fΘ, and E log+ ‖s(fΘ, yt, Xt; · , · )‖Θ < ∞ holds by

assumption. This implies that fΘ ∈ C(Θ,F) satisfies

E log+ ‖φ0(fΘ)− fΘ‖Θ ≤ E‖φ0(fΘ)− fΘ‖Θ ≤ E‖φ(fΘ, yt, Xt; ·)‖Θ + ‖fΘ‖Θ

= E sup
θ∈Θ
|φ(fΘ(θ), yt, Xt,θ)|+ sup

θ∈Θ
|fΘ(θ)| <∞.

By a similar argument E log+ sup(β,λ)∈B×Λ |s(f̄1, yt, Xt;β, λ)| < ∞ implies E log+ ‖φ0(fΘ) −

fΘ‖NfΘ <∞.

For any pair (fΘ, f
′Θ) ∈ C(Θ)× C(Θ), define

ρt = ρ(φt) = sup
(fΘ,f ′Θ)∈FΘ×FΘ

‖φt(fΘ)− φt(f
′Θ)‖Θ

‖fΘ − f ′Θ‖Θ
.

Condition C2 in Bougerol (1993b, Theorem 3.1) holds if E log ρt < 0. This is ensured by
3That (C(Θ,F), ‖ · ‖Θ) is a separable Banach space under compact Θ follows from application of the Arzeláscoli

theorem to obtain completeness and the Stone-Weierstrass theorem for separability.
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E log ‖φ̄′t‖Θ < 0, with φ̄′t(θ) as defined in (B.1). It becomes apparent by noting that

E log ρ(φt) = E log sup
‖fΘ−f ′Θ‖>0

‖φt(fΘ)− φt(f
′Θ)‖Θ

‖fΘ − f ′Θ‖Θ

= E log sup
‖fΘ−f ′Θ‖>0

supθ∈Θ |φ(f(θ), yt, Xt,θ)− φ(f ′(θ), yt, Xt,θ)|
supθ∈Θ |f(θ)− f ′(θ)|

≤ E log sup
‖fΘ−f ′Θ‖>0

supθ∈Θ φ̄′t(θ) supθ∈Θ |f(θ)− f ′(θ)|
supθ∈Θ |f(θ)− f ′(θ)|

= E log ‖φ̄′t‖Θ < 0.

Also note that for the t period composition of the stochastic recurrence equation, we have E log ρ(φt◦

. . . ◦ φ1) ≤ E log
∏t
j=1 ρ(φj) ≤

∑t
j=1 log ‖φ̄′j‖Θ < 0, where ◦ denotes composition. As a re-

sult, {f̃t(·, f̄1)}t∈N converges e.a.s. to an SE solution {f̃t(·)}t∈Z in ‖ · ‖Θ-norm. Uniqueness and

e.a.s. convergence is obtained in Straumann and Mikosch (2006, Theorem 2.8).

Finally, we show that supt E supθ∈Θ |f̃t(y1:t−1, X1:t−1,θ, f̄1)|Nf <∞ and also

E supθ∈Θ |f̃t(y1:t−1, X1:t−1,θ)|Nf < ∞. We have supt E supθ∈Θ |f̃t(y1:t−1, X1:t−1,θ, f̄1)|Nf

<∞ if and only if supt(E supθ∈Θ |f̃t(y1:t−1, X1:t−1,θ, f̄1)|Nf )1/Nf = supt ‖f̃t(·, f̄1)‖ΘNf <∞.

Furthermore, for any fΘ ∈ C(Θ,F), having ‖f̃t(·, f̄1)− fΘ‖ΘNf < ∞ implies ‖f̃t(·, f̄Θ1 )‖ΘNf <

∞ since continuity on the compact Θ implies supθ∈Θ |f(θ)| <∞. For fΘ ∈ C(Θ,F), we define

fΘ∗ , y∗, andX∗ such that fΘ = φ(y,X, fΘ∗ , ·) ∈ C(Θ,F). Using similar arguments as above, we

can show that under the current assumptions ∃ fΘ ∈ C(Θ,F) satisfying ‖φ(fΘ, yt, Xt; ·)‖ΘNf ≤
¯̄φ <∞ and ‖f̄Θ1 − fΘ‖ΘNf = ‖f̄Θ1 − φ(fΘ∗ , y∗, X∗; ·)‖ΘNf <∞. From this, we obtain

sup
t
‖f̃t+1(·, f̄Θ1 )− fΘ‖ΘNf = sup

t
‖φ(f̃t(·, f̄Θ1 ), yt, Xt; ·)− φ(fΘ∗ , y∗, X∗; ·)‖ΘNf

≤ sup
t
‖φ(f̃t(·, f̄Θ1 ), yt, Xt; ·)− φ(fΘ∗ , yt, Xt; ·)‖ΘNf+

sup
t
‖φ(fΘ∗ , yt, Xt; ·)‖ΘNf + sup

t
‖φ(fΘ∗ , y∗, X∗; ·)‖ΘNf

≤ sup
t

(
E sup
θ∈Θ
|f̃t(θ, f̄1)− fΘ∗ |Nf × sup

θ∈Θ

|φ(f̃t(θ, f̄
Θ
1 ), yt, Xt;θ)− φ(fΘ∗ (θ), yt, Xt;θ)|Nf

|f̃t(θ, f̄Θ1 )− fΘ∗ (θ)|Nf

)1/Nf

+ sup
t
‖φ(fΘ∗ , yt, Xt; ·)‖ΘNf + ‖fΘ‖ΘNf

≤ sup
t

(
E sup
θ∈Θ
|f̃t(θ, f̄1)− fΘ∗ |Nf × sup

θ∈Θ
φ̄′t(θ)Nf

)1/Nf
+ sup

t
‖φ(fΘ∗ , yt, Xt; ·)‖ΘNf + ‖fΘ‖ΘNf .

Using the orthogonality condition in (iv′), we can write the expectation of the product as the

9



product of the expectations and continue

≤ sup
t
‖f̃t( · , f̄Θ1 )− fΘ∗ ‖ΘNf · ‖φ̄

′
t‖ΘNf + sup

t
‖φ(fΘ∗ , yt, Xt; ·)‖ΘNf + ‖fΘ‖ΘNf

≤ ‖φ̄′t‖ΘNf ×
(

sup
t
‖f̃t( · , f̄Θ1 )− fΘ‖ΘNf

)
+ ¯̄φ+ f̄ ,

with c̄ = ‖φ̄′t‖ΘNf < 1 by condition (iv′), ¯̄φ <∞, and f̄ = ‖fΘ‖+ c̄ · ‖fΘ − fΘ∗ ‖ΘNf <∞. As a

result we have the recursion supt ‖f̃t+1(·, f̄Θ1 )− fΘ‖ΘNf ≤ c̄ · supt ‖f̃t(·, f̄Θ1 )− fΘ‖ΘNf + ¯̄φ+ f̄ .

Hence,

sup
t
‖f̃t(·, f̄Θ1 )− fΘ‖ΘNf ≤

t−2∑
j=0

(c̄)j(f̄ + ¯̄φ) + c̄t−1 sup
t
‖f̄Θ1 − fΘ‖ΘNf ≤

f̄ + ¯̄φ

1− c̄
+ ‖f̄Θ1 − fΘ‖ΘNf <∞.

The same result holds using the uniform contraction in (iv) by taking a further supremum in yt and

Xt instead of the orthogonality condition.

Proof of Theorem B.4: Assumption B.3 implies thatLT (θ, f̄1) = (1/T )
∑T

t=1 `t(θ, f̄1) is a.s. con-

tinuous (a.s.c.) in θ ∈ Θ through continuity (c.) of each

`t(θ, f̄1) = `(yt, Xt, f̃t(y
1:t−1, X1:t−1, f̄1,θ),θ)

= log pe(Zt(ft)
−1yt −Xtβ;λ)− log |Zt(ft)|

ensured in turn by the differentiability of S, pe and h and the implied a.s.c. of

∇(f̃t(y
1:t−1, X1:t−1, f̄1,θ), yt, Xt;β, λ) =

∂ log pe(Zt(f̃t(y
1:t−1, X1:t−1, f̄1,θ))−1yt −Xtβ;λ)

∂f

− ∂ log |Zt(f̃t(y1:t−1, X1:t−1, f̄1,θ))|
∂f

in (f̃t(y
1:t−1, X1:t−1, f̄1,θ);λ) and the resulting c. of f̃t(y1:t−1, X1:t−1, f̄1,θ) in θ as a composi-

tion of t c. maps. Together with the compactness of Θ this implies by Weierstrass’ theorem that

the arg max set is non-empty a.s. and hence that θ̂T exists a.s. ∀T ∈ N. Assumption B.3 implies

also by a similar argument that

LT (θ, f̄1) = LT
(
f̃1:T (y1:t−1, X1:t−1, f̄1,θ); y1:T , X1:T ,θ

)
is continuous in (y1:T , X1:T ) ∀ θ ∈ Θ and hence measurable w.r.t. the product Borel σ-algebra

10



B(Y)⊗B(X ) that are, in turn, measurable maps w.r.t. F by Proposition 4.1.7 in Dudley (2002).4

The measurability of θ̂T follows from Foland (2009, p.24) and White (1994, Theorem 2.11) or

Gallant and White (1988, Lemma 2.1, Theorem 2.2).5

Proof of Theorem B.7: We obtain θ̂T (f̄1)
a.s.→ θ0 from the uniform convergence of the criterion

function

sup
θ∈Θ
|LT (θ, f̄1)− L∞(θ)| a.s.→ 0 ∀ f̄1 ∈ F as T →∞, (B.3)

and the identifiable uniqueness of the maximizer θ0 ∈ Θ introduced in White (1994),

sup
θ:‖θ−θ0‖>ε

L∞(θ) < L∞(θ0) ∀ ε > 0; (B.4)

see for example White (1994, Theorem 3.4) or Theorem 3.3 in Gallant and White (1988) for

further details.

The uniform convergence is obtained by norm sub-additivity,6

sup
θ∈Θ
|LT (θ, f̄1)− L∞(θ)| ≤ sup

θ∈Θ
|LT (θ, f̄1)− LT (θ)|+ sup

θ∈Θ
|LT (θ)− L∞(θ)|,

and then showing that the initialization effect vanishes asymptotically,

sup
θ∈Θ
|LT (θ, f̄1)− LT (θ)| a.s.→ 0 as T →∞, (B.5)

and for the second term applying the ergodic theorem for separable Banach spaces in Ranga Rao

(1962), as in Straumann and Mikosch (2006, Theorem 2.7), to the sequence {LT (·)}with elements

taking values in C(Θ,R) so that

sup
θ∈Θ
|LT (θ)− L∞(θ)| a.s.→ 0 where L∞(θ) = E`t(θ) ∀ θ ∈ Θ.

The criterion LT (θ, f̄1) satisfies (B.5) if

sup
θ∈Θ
|`t(θ, f̄1)− `t(θ)| a.s.→ 0 as t→∞.

4Dudley’s proposition states that the Borel σ-algebra B(A × B) generated by the Tychonoff’s product topology
TA×B on the space A× B includes the product σ-algebra B(A)⊗ B(B).

5The reference of Foland (2009) is used here to establish that a map into a product space is measurable if and only
if its projections are measurable.

6LT (θ) denotes LT (θ, f̄1) with f̃(θ, f̄1) replaced by its limit f̃(θ).
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The continuity of pe ensures that `t(·, f̄1) = `(f̃t(y
t, Xt, ·, f̄1), yt, Xt, ·) is continuous in (f̃t(y

t, Xt, ·, f̄1), yt, Xt).

Since all the assumptions of Theorem 1 are satisfied we know that there exists a unique SE se-

quence {f̃t(yt, Xt, ·))}t∈Z with elements taking values in C(Θ,F) such that

sup
θ∈Θ

∣∣(f̃t(yt−1, Xt−1, f̄1,θ), yt, Xt)− (f̃t(y
t−1, Xt−1,θ), yt, Xt)

∣∣ a.s.→ 0,

and

sup
t

E sup
θ∈Θ
|f̃t(yt−1, Xt−1, f̄1,θ)Nf | <∞ and E sup

θ∈Θ
|f̃t(yt−1, Xt−1,θ)|Nf <∞,

with Nf ≥ 1. Hence, (B.5) follows by application of a continuous mapping theorem for ` :

C(Θ,F)→ C(Θ,F).

The ULLN supθ∈Θ |LT (θ) − E`t(θ)| a.s.→ 0 as T → ∞ follows, under a moment bound

E supθ∈Θ |`t(θ)| < ∞, by the SE nature of {`t}t∈Z which is implied by continuity of ` on the

SE sequence {(yt, Xt, f̃t(y
t−1, Xt−1, ·))}t∈Z and Proposition 4.3 in Krengel (1985). The moment

bound E supθ∈Θ |`t(θ)| <∞ can be established as follows. First note that

E sup
θ∈Θ
|`t(θ)| = sup

θ∈Θ
E| log pe(yt − h(f̃t(y

t−1, Xt−1,θ))Wyt−1 −Xtβ)

− log detZ(f̃t(y
t−1, Xt−1,θ))|

≤ sup
θ∈Θ

E| log pe(yt − h(f̃t(y
t−1, Xt−1,θ))Wyt−1 −Xtβ)|

− sup
θ∈Θ

E| log detZ(f̃t(y
t−1, Xt−1,θ))| <∞,

then the bounded first moment for the likelihood is implied by having

E|yt|Ny <∞ , E|Xt|NX <∞, and sup
θ∈Θ

E|f̃t(yt−1, Xt−1,θ)|Nf <∞.

since then

sup
θ∈Θ

E| log detZ(f̃t(y
t−1, Xt−1,θ))| <∞,

sup
θ∈Θ

E| log pe(yt − h(f̃t(θ))Wyt−1 −Xtβ)| <∞,

because of the moment preserving properties of log |Z| and log pe with with Nlog |Z| ≥ 1 and

Nlog pe ≥ 1 by assumption.

Finally, the identifiable uniqueness (see e.g. White (1994)) of θ0 ∈ Θ in (B.4) follows from

the assumed uniqueness, the compactness of Θ, and the continuity of the limit E`t(θ) in θ ∈ Θ
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which is implied by the continuity of LT in θ ∈ Θ ∀ T ∈ N and the uniform convergence in

(B.3).

Proof of Theorem B.10: As the likelihood and its derivatives depend on the derivatives of f̃t(θ, f̄1)

with respect to θ, we introduce the notation f (0:m)
t as the vector containing f̃t(θ, f̄1) and its deriva-

tives up to order m, with initial condition f̄ (0:m). We obtain the desired result from: (i) the strong

consistency of θ̂T
a.s.→ θ0 ∈ int(Θ); (ii) the a.s. twice continuous differentiability of LT (θ, f̄1) in

θ ∈ Θ; (iii) the asymptotic normality of the score

√
TL′T

(
θ0, f̄

(0:1)
1 )

d→ N(0,J (θ0)
)
, J (θ0) = E

(
˜̀′
t

(
θ0)˜̀′

t

(
θ0)>

)
; (B.6)

(iv) the uniform convergence of the likelihood’s second derivative,

sup
θ∈Θ

∥∥L′′T (θ, f̄
(0:2)
1 )− L′′∞(θ)

∥∥ a.s.→ 0; (B.7)

and finally, (v) the non-singularity of the limit L′′∞(θ) = E˜̀′′
t (θ) = I(θ). See e.g. in White (1994,

Theorem 6.2) for further details.

The consistency condition θ̂T
a.s.→ θ0 ∈ int(Θ) in (i) follows under the maintained assump-

tions from Theorem B.7 and the additional assumption in Theorem B.10 that θ0 ∈ int(Θ). The

smoothness condition in (ii) follows immediately from Assumption B.5 and the likelihood expres-

sions in Appendix B.4.

The asymptotic normality of the score in (B.9) follows by Theorem 18.10[iv] in van der Vaart

(2000) by showing that

‖L′T
(
θ0, f̄

(0:1)
1 )− L′T

(
θ0)‖ e.a.s.→ 0 as T →∞, (B.8)

plus a CLT result forL′T (θ0). Note that from (B.8) we obtain that
√
T‖L′T

(
θ0, f̄

(0:1)
1 )−L′T

(
θ0)‖ a.s.→

0 as T → ∞. The desired CLT result follows by an application of the CLT for SE martingales in

Billingsley (1961),
√
TL′T

(
θ0)

d→ N(0,J (θ0)
)

as T →∞, (B.9)

where J (θ0) = E(˜̀′
t

(
θ0)˜̀′

t

(
θ0)>) < ∞, where finite (co)variances follow from the assumption

N`′ ≥ 2 in Assumption B.9 and the expressions for the likelihood in Appendix B.4.
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To establish the e.a.s. convergence in (B.8), we use the e.a.s. convergence

|f̃t(y1:t−1, X1:t−1,θ0, f̄1)− f̃t(yt−1, Xt−1,θ0)| e.a.s.→ 0, (B.10)

and

‖f̃ (1)
t (y1:t−1, X1:t−1,θ0, f̄

(0:1)
1 )− f̃ (1)

t (y1:t−1, X1:t−1,θ0)‖ e.a.s.→ 0. (B.11)

The e.a.s. convergence in (B.10) is obtained directly by application of Theorem 1 under the main-

tained assumptions. The e.a.s. convergence in (B.11) is obtained by the same argument as in the

proof of Theorem 1 since: (a) the expressions for the derivative process {f̃ (1)
t } in Appendix B.4

show that the contraction condition

E log sup
θ∈Θ

φ̄′1,1(θ) < 0

for the recursion of the filter {f̃t} is the same as the contraction condition for the derivative process

{f̃ (1)
t }; and (b) the expressions in Appendix B.4 also reveal that the counterpart of the moment

condition

E log+ sup
(B,λ)∈B×Λ

|s(f̄1, yt, Xt;B, λ)| <∞,

used in Theorem 1 for the filtered process {f̃t}, is implied by the condition that

min{Nf , Ns, N
0,1,0
s , N (0,0,1)

s } > 0,

as imposed in Assumption B.9.

From the differentiability of

˜̀′
t(θ, f̄

(0:1)
1 ) = `′

(
θ, y1:t, X1:t, f̃

(0:1)
t (y1:t−1, X1:t−1,θ, f̄

(0:1)
1 )

)
in f̃

(0:1)
t (y1:t−1, X1:t−1,θ, f̄

(0:1)
1 ) and the convexity of F , we use the mean-value theorem to

obtain

‖L′T
(
θ0, f̄

(0:1)
1 )− L′T

(
θ0)‖ ≤

4+dλ∑
j=1

∣∣∣∂`′(y1:t, X1:t, f̂
(0:1)

t )

∂fj

∣∣∣
×
∣∣f̃ (0:1)
j,t (y1:t−1, X1:t−1,θ0, f̄

(0:1)
1 )− f̃ (0:1)

j,t (y1:t−1, X1:t−1,θ0)
∣∣,

(B.12)

where dλ denotes the dimension of λ, and f̃
(0:1)
j,t denotes the j-th element of f̃

(0:1)
t , and f̂

(0:1)
is
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on the segment connecting f̃
(0:1)
j,t (y1:t−1, X1:t−1,θ0, f̄

(0:1)
1 ) and f̃

(0:1)
j,t (y1:t−1, X1:t−1,θ0). Note

that f̃
(0:1)
t ∈ R4+dλ because it contains f̃t ∈ R (the first element) as well as f̃

(1)
t ∈ R3+dλ

(the derivatives with respect to ω, A, B, and λ). Using the expressions of the likelihood and

its derivatives in Appendix B.4, the moment bounds and the moment preserving properties in

Assumption B.9, and the expressions in Appendix B.4 shows that

∣∣∂`′(y1:t, X1:t, f̂
(0:1)

t )/∂fj
∣∣ = Op(1) ∀j = 1, . . . , 4 + dλ.

The strong convergence in (B.12) is now ensured by

‖L′T
(
θ0, f̄

(0:1)
1 )− L′T

(
θ0)‖ =

4+dλ∑
i=1

Op(1)oe.a.s(1) = oe.a.s.(1). (B.13)

The proof of the uniform convergence in (B.7) is similar to that of Theorem B.4. We note

sup
θ∈Θ
‖L′′T (θ, f̄1)− L′′∞(θ)‖ ≤ sup

θ∈Θ
‖L′′T (θ, f̄1)− L′′T (θ)‖+ sup

θ∈Θ
‖L′′T (θ)− L′′∞(θ)‖. (B.14)

To prove that the first term vanishes a.s., we show that

sup
θ∈Θ
‖˜̀′′t (θ, f̄1)− ˜̀′′

t (θ)‖ a.s.→ 0 as t→∞.

The differentiability of g̃, g̃′, p̃, and S from Assumption B.5 ensure that

˜̀′′
t (·, f̄1) = `′′(yt, f̃

(0:2)
t (y1:t−1, X1:t−1, ·, f̄0:2), ·)

is continuous in (yt, f̃
(0:2)
t (y1:t−1, X1:t−1, ·,f0:2)). Again, we note that the proof of Theorem B.1

can be easily adapted to show that there exists a unique SE sequence {f̃ (0:2)
t (yt−1, Xt−1, ·)}t∈Z

such that

sup
θ∈Θ

∥∥(yt, f̃
(0:2)
t (y1:t−1, X1:t−1,θ, f̄0:2))− (yt, f̃

(0:2)
t (yt−1, Xt−1,θ)

∥∥ a.s.→ 0,

and satisfying, for for Nf ≥ 1,

sup
t

E sup
θ∈Θ
‖f̃ (0:2)

t (y1:t−1, X1:t−1,θ, f̄0:2)‖Nf <∞,
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and also

E sup
θ∈Θ
‖f̃ (0:2)

t (yt−1, Xt−1,θ)‖Nf <∞,

because (a) the expressions for the derivative process {f̃ (1)
t } in Appendix B.4 show that the con-

traction condition

E log sup
θ∈Θ

φ̄′1,1(θ) < 0

for the recursion of the filter {f̃t} is the same as the contraction condition for the second derivative

process {f̃ (2)
t }; and (b) the expressions in Appendix B.4 show also that the counterpart of the

moment condition

E log+ sup
(B,λ)∈B×Λ

|s(f̄1, yt, Xt;B, λ)| <∞,

used in Theorem 1 for the filtered process {f̃t}, is implied by the condition that

min

{
N

(1)
f , N (0,1,0)

s , N (0,0,1)
s , N (0,2,0)

s , N (0,0,2)
s , N (0,1,1)

s ,
N

(1,0,0)
s N

(1)
f

N
(1,0,0)
s +N

(1)
f

,

N
(2,0,0)
s N

(1)
f

2N
(2,0,0)
s +N

(1)
f

,
N

(1,1,0)
s N

(1)
f

N
(1,1,0)
s +N

(1)
f

,
N

(1,0,1)
s N

(1)
f

N
(1,0,1)
s +N

(1)
f

}
> 0 ,

imposed in Assumption B.9. By application of a continuous mapping theorem for `′′ : C(Θ ×

F (0:2))→ R we thus conclude that the first term in (B.14) converges to 0 a.s..

The second term in (B.14) converges under a bound E supθ∈Θ ‖˜̀′′t (θ)‖ <∞ by the SE nature

of {L′′T }t∈Z. The latter is implied by continuity of `′′ on the SE sequence

{(yt, Xt, f̃
(0:2)
t (y1:t−1, X1:t−1, ·))}t∈Z.

The moment bound E supθ∈Θ ‖˜̀′′t (θ)‖ < ∞ follows from N`′′ ≥ 1 in Assumption B.9 and the

expressions in Appendix B.4. Finally, the non-singularity of the limit L′′∞(θ) = E˜̀′′
t (θ) = I(θ)

in (v) below equation (B.7) is implied by the uniqueness of θ0 as a maximum of L′′∞(θ) in Θ.

B.4 Derivatives of the likelihood function

We take first derivatives of the likelihood with respect to all static parameters θ = (ω,A,B, β′, σ2)′:

∂`t
∂θ

=

(
∂`t
∂ω

,
∂`t
∂a

,
∂`t
∂b
,
∂`t
∂β

,
∂`t
∂σ2

)′
Let θm denote themth element of θ, p̃t = log pe(yt−h(f̃t)Wyt−Xtβ), and g̃′t = log |Z(f̃t)

−1|.
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We can decompose the derivatives of the likelihood with respect to each θm into two parts:

∂`t
∂θm

=
∂(p̃t + log g̃′t)

∂ft
· ∂ft
∂θm

+
∂p̃t
∂θm

= ∇t ·
∂ft
∂θm

+
∂p̃t
∂θm

, (B.15)

because g̃′t does not depend on any of the parameters directly, only through ft. For θm ∈ {ω,A,B}

the second term is zero, because these parameters enter the likelihood only through ft.

All partial derivatives contain the term ∂ft/∂θm given by

∂ft
∂θm

=
∂

∂θm
(ω +Ast−1 +Bft−1) (B.16)

=
∂ω

∂θm
+

∂A

∂θm
st−1 +A

∂st−1

∂ft−1
· ∂ft−1

∂θm
+A

∂st−1

∂θm
+

∂B

∂θm
ft−1 +B

∂ft−1

∂θm
(B.17)

=
∂ω

∂θm
+

∂A

∂θm
∇t−1 +A∇′t−1 ·

∂ft−1

∂θm
+A

∂∇t−1

∂θm
+

∂B

∂θm
ft−1 +B

∂ft−1

∂θm
(B.18)

=
∂ω

∂θm
+

∂A

∂θm
∇t−1 +A

∂∇t−1

∂θm
+

∂B

∂θm
ft−1 + (A∇′t−1 +B)

∂ft−1

∂θm
(B.19)

We want the matrix of second derivatives of the likelihood function, i.e.

∂2`t
∂θ∂θ′

.

We take another derivative of (B.15) with respect to θo:

∂2`t
∂θm∂θo

= ∇′t ·
∂ft
∂θo
· ∂ft
∂θm

+
∂∇t
∂θo
· ∂ft
∂θm

+∇t
∂2f2

t−1

∂θmθo
+

∂2p̃t
∂θm∂θo

(B.20)
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The second derivative process takes the form

∂2ft
∂θm∂θo

=
∂A

∂θm
· ∂∇t−1

∂ft−1
· ∂ft−1

∂θo
+

∂A

∂θm

∂∇t−1

∂θo

+
∂A

∂θo

∂∇t−1

∂ft−1

∂ft−1

∂θm
+A

∂2∇t−1

∂f2
t−1

∂ft−1

∂θo

∂ft−1

∂θm
+A

∂2∇t−1

∂ft−1∂θo

∂ft−1

∂θm

+A
∂∇t−1

∂ft−1

∂2ft−1

∂θm∂θo
+
∂A

∂θo

∂∇t−1

∂θm
+A

∂2∇t−1

∂θm∂θo
+A

∂2∇t−1

∂θm∂ft−1

∂ft−1

∂θo

+
∂B

∂θm

∂ft−1

∂θo
+
∂B

∂θo

∂ft−1

∂θm
+B

∂2ft−1

∂θm∂θo

=
∂A

∂θm
· ∇′t−1 ·

∂ft−1

∂θo
+

∂A

∂θm

∂∇t−1

∂θo

+
∂A

∂θo
· ∇′t−1 ·

∂ft−1

∂θm
+A∇′′t−1 ·

∂ft−1

∂θo

∂ft−1

∂θm
+A

∂∇′t−1

∂θo

∂ft−1

∂θm

+A∇′t−1

∂2ft−1

∂θm∂θo
+
∂A

∂θo

∂∇t−1

∂θm
+A

∂2∇t−1

∂θm∂θo
+A

∂2∇t−1

∂θm∂ft−1

∂ft−1

∂θo

+
∂B

∂θm

∂ft−1

∂θo
+
∂B

∂θo

∂ft−1

∂θm
+B

∂2ft−1

∂θm∂θo
.

(B.21)
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Appendix C Additional tables and figures

Table C.1: Key policy events during the Eurozone crisis

Date Event Source
Oct. 18, 2009 Greece announces doubling of budget deficit The Guardian1

Mar. 3, 2010 EU offers financial help to Greece ECB2

Dec. 7, 2010 Ireland is bailed out by EU and IMF ECB2

Dec. 22, 2011 ECB launches the first Longer-Term Refinancing Operation (LTRO) ECB2

Mar. 1, 2012 ECB launches the second LTRO ECB2

Jul. 26, 2012 M. Draghi: “[T]he ECB is ready to do whatever it takes to preserve the euro.” ECB3

Oct. 8, 2012 European Stability Mechanism (ESM) is inaugurated ESM4

Sep. 12, 2013 European Parliament approves new unified bank supervision system ECB2

1http://www.theguardian.com/business/2012/mar/09/greek-debt-crisis-timeline
2http://www.ecb.europa.eu/ecb/html/crisis.de.html
3http://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html
4http://www.esm.europa.eu/press/releases/20121008 esm-is-inaugurated.htm
All retrieved on June 19, 2014.

19

http://www.theguardian.com/business/2012/mar/09/greek-debt-crisis-timeline
http://www.ecb.europa.eu/ecb/html/crisis.de.html
http://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html
http://www.esm.europa.eu/press/releases/20121008_esm-is-inaugurated.htm


Mario Draghi: 
„Whatever it takes“ 

Ireland bailed out Help offer to 
Greece 

First LTRO Second LTRO 

ESM 
inaugurated 

Greece : record 
deficit 

New supervisory 
authority 

Figure C.1: Filtered spatial dependence parameters obtained from the full model, together with
key policy events from Table C.1.
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Figure C.2: Filtered spatial parameter obtained from the time-varying spatial score model with
time-varying volatilities, using absolute CDS spread changes as dependent variable.
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Table C.2: Cross-correlation matrices: raw data and full model residuals

Correlation matrix of raw CDS change data
Belgium France Germany Ireland Italy Netherlands Portugal Spain

Belgium 1.000 0.724 0.697 0.630 0.738 0.737 0.643 0.707
France 1.000 0.724 0.581 0.655 0.678 0.581 0.657
Germany 1.000 0.553 0.609 0.685 0.534 0.577
Ireland 1.000 0.718 0.575 0.724 0.685
Italy 1.000 0.654 0.740 0.847
Netherlands 1.000 0.566 0.620
Portugal 1.000 0.742
Spain 1.000

Correlation matrix of residuals
Belgium France Germany Ireland Italy Netherlands Portugal Spain

Belgium 1.000 0.118 0.146 -0.089 0.204 0.038 0.132 0.199
France 1.000 0.201 -0.136 -0.159 0.032 -0.035 -0.020
Germany 1.000 -0.270 -0.453 -0.002 -0.087 -0.223
Ireland 1.000 0.174 -0.039 0.222 0.038
Italy 1.000 -0.003 0.305 0.577
Netherlands 1.000 -0.034 -0.064
Portugal 1.000 0.041
Spain 1.000
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