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Abstract

We extend the well-known static spatial Durbin model by introducing a time-varying spatial
dependence parameter. The updating steps for this model are functions of past data and have
information theoretic optimality properties. The static parameters are conveniently estimated
by maximum likelihood. We establish the theoretical properties of the model and show that
the maximum likelihood estimators of the static parameters are consistent and asymptotically
normal. Using spatial weights based on cross-border lending data and European sovereign
CDS spread data over the period 2009–2014, we find evidence of contagion in terms of high,
time-varying spatial spillovers in the perceived credit riskiness of European sovereigns during
the sovereign debt crisis. We find a particular downturn in spatial dependence in the second
half of 2012 after the outright monetary transactions policy measures taken by the European
Central Bank. Earlier non-standard monetary operations by the ECB did not induce such
changes. The findings are robust to a wide range of alternative model specifications.
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1 Introduction

We propose a new parsimonious model to measure the time-varying cross-sectional dependence in

European sovereign credit spread changes in order to investigate the effectiveness of non-standard

monetary operations by the ECB in reducing contagion concerns during the European sovereign

debt crisis. The model builds on the well-known spatial Durbin model for panel data. The strength

of contemporaneous spillover effects is summarized in a single time-varying parameter: the spatial

dependence parameter. We argue that this parameter may be interpreted as a measure of sovereign

systemic risk that relates to the connectedness of the system in a similar way as the unconditional

correlations of Forbes and Rigobon (2002). The changes in the dependence parameter can thus be

labeled as contagion in the technical sense of Forbes and Rigobon (2002).

Our paper contributes to two strands of literature. First, we contribute to the applied spatial

econometrics literature. Spatial models have been widely used in applied geographic and regional

science studies, and have recently also been applied in empirical finance; see Fernandez (2011)

for a CAPM model augmented by spatial dependencies, Wied (2013), Arnold et al. (2013), Kelly

et al. (2013), and Asgharian et al. (2013) for analyses of spatial dependencies in stock markets,

Denbee et al. (2014) for a network approach to assess interbank liquidity, and Saldias (2013) for a

spatial error model to identify sector risk determinants. Keiler and Eder (2015) and Tonzer (2015)

both use spatial lag models, to model CDS spreads of financial institutions and banking sector

risks, respectively.

The above models, however, treat the spatial dependence parameter as static. To the best of

our knowledge, explicitly endowing the spatial dependence parameter in the spatial Durbin model

with time series dynamics is a new development. Allowing for such dynamics may be important

empirically; see for example our financial systemic stability application in Section 5. We model

the dynamics using the score-driven framework proposed by Creal et al. (2011, 2013) and Harvey

(2013). Given the nonlinear impact of the time-varying parameter in the model, the theoretical

properties of this model and the asymptotic properties of the maximum likelihood estimator (MLE)

for the remaining static parameters are challenging and have not been established so far. We show

under what conditions the filtered spatial dependence parameters are well behaved, such that the

model is invertible. Invertibility is a key property for establishing consistency and asymptotic

normality of the MLE; see for example Wintenberger (2013). We derive new conditions for the
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asymptotic properties of the MLE compared to Blasques et al. (2014), allowing for exogenous

regressors to be part of the specification. We also discuss the information theoretic optimality of

the model and illustrate in a simulation study that the model is able to track a range of different

patterns for the time-varying spatial dependence parameter.

Second, we contribute to the literature that studies the dynamics of financial systemic risk in

the context of a network of sovereigns or financial firms. Since the beginning of the European

sovereing debt crisis in 2009, the sharp increases and comovements of sovereign credit spreads

have been the subject of a growing number of empirical studies in finance. For instance, by

employing an asset pricing model, Ang and Longstaff (2013) investigate the differences between

U.S. and European credit default swap (CDS) spreads as a reflection of systemic risk. Lucas

et al. (2014) and Kalbaska and Gatkowski (2012) use multivariate time series models to model

comovements in European sovereign CDS spreads. Ait-Sahalia et al. (2014) model sovereign

credit default intensities using multivariate jump processes. De Santis (2012) and Arezki et al.

(2011) study credit risk spillover effects that are induced by rating events, such as downgrades

of Greek government bonds. Leschinski and Bertram (2013) find contagion effects in European

sovereign bond spreads using the simultaneous equations approach of Pesaran and Pick (2007).

Caporin et al. (2013), on the other hand, employ Bayesian quantile regressions, and conclude that

comovements in European credit spreads during the debt crisis are only due to increased volatities,

but not contagion.

Our approach differs from the studies above since we introduce cross-sectional correlation not

only through contemporaneous error correlations, but also through spillovers induced by shocks to

the regressors, such as stock market crashes or interbank lending rates. Furthermore, we explicitly

offer financial sector linkages as the source of sovereign credit risk comovements. This view is

supported by the results of Korte and Steffen (2015), Kallestrup et al. (2016), Gorea and Radev

(2014), and Beetsma et al. (2012), in which cross-border exposures between international financial

sectors are relevant drivers of sovereign credit spreads. By exploiting these debt interconnections

as economic distances between sovereigns in our spatial model, we obtain a scalar time-varying

(spatial) dependence coefficient. We interpret this parameter in the systemic context as the over-

all tendency for shock spillovers. Such changes to spillovers are directly linked to contagion as

defined in the technical sense of Forbes and Rigobon (2002). As such, the spatial dependence co-

efficient provides a measure of changes in systemic risk and the market’s perception of contagion
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within the euro area.

We organize the remainder of this paper as follows. Section 2 introduces our spatial score

model with time-varying parameters, formulates the information theoretic optimality properties of

the steps, and establishes the consistency and asymptotic normality of the maximum likelihood

estimator. In Section 3, we provide Monte Carlo evidence of the model’s ability to track different

dynamic patterns in spatial dependence over time. Section 4 describes the data for our study on

European sovereign CDS spread dynamics. Section 5 provides the results for our main model, its

extensions and some alternative specifications. Section 6 concludes.

2 Spatial models with dynamic spatial dependence

2.1 Static spatial model for panel data

The Spatial Durbin Model (SDM) for panel data is given by

yt = ρWyt + β11n +Atβ2 +W Atβ3 + et, et ∼ pe(et; Σ, λ), t = 1, . . . , T, (1)

where yt = (y1t, . . . , ynt)
′ denotes a vector of n cross-sectional observations at time t, ρ is the

spatial dependence coefficient, W is an n × n matrix of exogenous spatial weights, β1 is an

unknown scalar intercept, 1n is an n × 1-vector of ones, At is an n × k matrix of exogenous

regressors, β2 and β3 are k × 1 vectors of unknown coefficients, respectively,1 and et is an n× 1

disturbance vector with multivariate density pe(et,Σ;λ), mean zero, unknown k × k covariance

(or scale) matrix Σ, and other parameters describing the shape of the distribution are collected in

the parameter vector λ. For example, if pe is a Student’s t distribution, λ contains the degrees of

freedom parameter.

Model (4) implies that each entry yit, for i = 1, . . . , n, of the vector yt depends on the other

entries yjt, for j 6= i. For a moderately large n, we cannot estimate such a system of contempora-

neous dependencies without imposing further restrictions. The idea of a spatial dependence model

is to specify the spatial weight matrixW as a function of geographic or economic distances, and in

this way exogenously define a neighborhood structure between the cross-sectional units. It is stan-
1Here, we assume thatAt only contains individual-specific regressors. In our empirical application, we also consider

regressors that are common to all units. In this case, to avoid multicollinearity due to the row-normalization ofW ,W At
only comprises the subset of individual-specific regressors.
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dard practice to use a row-normalized weight matrix W such that
∑n

j=1wij = 1 for i = 1, . . . , n,

where wij is the (i, j)th element of W . The impact of the (spatially weighted) contemporaneous

dependent variables Wyt on yt is captured by a scalar spatial dependence parameter ρ. For shocks

to die out over space, we require ρ ∈ (1/ωmin, 1) where ωmin is the smallest eigenvalue of W ;

see for example Lee (2004).

In addition to the spatial lag of the dependent variable, the Spatial Durbin Model (1) features

spatial lags of the individual-specific regressors. This implies that each panel unit’s dependent

variable may react to shocks to the regressor(s) of its neighboring units. The model formulation

not only nests the widely used Spatial Lag Model (SLM) for β2 = 0, it is also the reduced form of

a model with spatial dependence in the error term, the so-called Spatial Error Model (SEM). The

SEM has the form

yt = γ11n +Atγ2 + ut, ut = δWut + et. (2)

where γ1 and δ are unknown scalars, γ2 is an unknown coefficient vector and et is defined as

above. The model can be rewritten as

yt = δWyt + γ̃11n + (In − δW )Atγ2 + et (3)

with γ̃1 = γ1(In − δW ), which is a SDM model with β2 = γ2 and parameter restriction β3 =

−δγ2, see also LeSage and Pace (2008).

In the following, we write the SDM as

yt = ρWyt +Xtβ + et (4)

with Xt := (1n : At : WAt) and β := (β1, β
′
2, β
′
3)′. It can be shown that this basic form can

capture nonlinear feedback effects across units by rewriting it as

yt = ZXtβ + Zet, (5)

where we assume that the inverse matrix Z = (In − ρW )−1 exists, with In denoting the n × n

identity matrix. Using an infinite power series expansion as in LeSage and Pace (2008), we obtain
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yt = Xtβ + ρWXtβ + ρ2W 2Xtβ + · · ·+ et + ρWet + ρ2W 2et + · · · . (6)

Equation (6) reveals that eit and x′itβ for unit i spill over to other units j 6= i. The extent of

spillover depends on the relative proximity of j to i via the weight matrix W and the spatial

dependence parameter ρ. At the same time, there are possible feedback effects back to unit i itself,

for example if wij and wji are both non-zero, such that i and j are mutual neighbors, and i is a

‘second-order neighbor’ to itself.

The simultaneous equations structure of (4) leads to an endogeneity problem and causes the

least squares estimator in (4) to be inconsistent, As an alternative solution, we can estimate the

parameters by the method of Maximum Likelihood (ML) or Quasi-ML (QML) where the latter

is typically based on the normal distribution.2 The ML Estimator (MLE) for spatial models with

static dependence parameter was first studied in Ord (1975) in the context of cross-sectional data

sets. Lee (2004) derives asymptotic properties of the QML Estimator (QMLE) for n → ∞,

and Hillier and Martellosio (2013) investigate its finite sample distribution. Large n and large T

asymptotics for the QMLE of the spatial model with static dependence parameter are studied in

Yu et al. (2008). For further textbook treatments, we refer to Anselin (1988) and LeSage and Pace

(2008). For a survey on the panel data spatial lag model and parameter estimation, see Lee and Yu

(2010).

2.2 Score dynamics for the spatial dependence parameter

We can interpret the spatial dependence parameter ρ in (4) as a measure of the strength of cross-

sectional spillovers. In many empirical applications involving panel data, it is unrealistic to assume

that ρ is constant over the entire sample period. We therefore introduce a time-varying spatial

dependence parameter ρt in the model, that is

yt = ρtWyt +Xtβ + et, et ∼ pe(et; Σ, λ), t = 1, . . . , T, (7)

where ρt = h(ft) is a monotonic transformation of a time-varying parameter ft. Time-variation

in ρt has been at the core of attention in financial economics. In particular, the line of literature

starting with Forbes and Rigobon (2002) states that changes in spillovers (as for example picked
2Alternatively, we can use GMM as in, for example, Kelejian and Prucha (2010).
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up by changes in ρt) are much better measures of financial contagion than are pairwise correla-

tions. We choose the link function h such that ρt ∈ (−1, 1). To describe the dynamics of ft,

we adopt the autoregressive score framework of Creal et al. (2011, 2013) and Harvey (2013). The

score framework for time-varying parameters has been adopted successfully in a range of different

empirical settings, including the multivariate volatility model of Creal et al. (2011), the systemic

risk model of Oh and Patton (2016) and Lucas et al. (2014), the credit risk dynamic factor model

of Creal et al. (2014), and the location and scale models with fat tails of Harvey and Luati (2014).3

The score framework centers around the use of the scaled score of the conditional density pe

to drive the time-variation in ft. The updating equation for ft is given by

ft+1 = ω +Ast +Bft, (8)

where ω, A, and B are fixed unknown parameters, and st = St∇t is the scaled score function.

The scaled score function is defined as the first derivative of the predictive log-likelihood function

at time t with respect to ft, possibly multiplied by some local scaling factor St. In our case, the

score function is given by∇t = (∂`t/∂ρt) · (∂h(ft)/∂ft) with ρt = h(ft), where

`t = log pe (yt − ρtWyt −Xtβ,Σ;λ) + log |(In − ρtW )| . (9)

Throughout this paper, we use unit scaling, that is St ≡ 1 such that st = ∇t. Other scaling

choices are also feasible; see Creal et al. (2013).4 Equation (9) differs from the likelihood of

a simple linear regression model by the term log |(In − h(ft)W )|. This term accounts for the

nonlinearity of the model in ρt as shown in equation (5). We define the vector of static parameters

θ = (ω,A,B, β, λ)′ and estimate θ via the numerical maximization of the likelihood function

LT =
T∑
t=1

`t. (10)

We consider two specifications for the disturbance density pe, namely the multivariate normal

distribution and the multivariate Student’s t distribution. The latter is particularly relevant for our

empirical study because changes in credit default swap (CDS) spreads may be fat-tailed. Also,
3See www.gasmodel.com for a more complete compilation of papers.
4In a simulation (not reported here) we show that different choices of scaling, such as scaling by the inverse infor-

mation matrix scaling or by its square root, did not have much impact on our empirical results.
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Creal et al. (2011) and Harvey and Luati (2014) argue that the Student’s t distribution can render

the dynamics more robust to incidental influential observations and outliers.

Using the standard expression for the multivariate normal density, we obtain the time t contri-

bution to the log-likelihood function as

`t = log |I− h(ft)W | −
n

2
log(2π)− 1

2
log |Σ|

−1

2
(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ),

and the resulting score

∇t =
(
y′tW

′Σ−1(yt − h(ft)Wyt −Xtβ)− tr(Z(ft)W )
)
· ḣ(ft), (11)

where tr(·) is the trace operator, Z(ft) = (In−h(ft)W )−1, and ḣ(ft) is the first derivative of the

transformation function h with respect to ft. For instance, if h(ft) = γ tanh(ft) with γ ∈ (0, 1),

then ḣ(ft) = γ(1 − tanh2(ft)). When the density of the disturbance vector et is a multivariate

Student’s t distribution with λ degrees of freedom, we obtain

`t = log |Z(ft)
−1|+ log

(
Γ
(
λ+n

2

)
|Σ|1/2(λπ)n/2Γ

(
λ
2

))

−
(
λ+ n

2

)
log

(
1 +

(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ)

λ

)
,

with the corresponding score function

∇t =
(
w̃t · y′tW ′Σ−1(yt − h(ft)Wyt −Xtβ)− tr(Z(ft)W )

)
· ḣ(ft), (12)

w̃t = (1 + λ−1n)
/(

1 + λ−1(yt − h(ft)Wyt −Xtβ)′Σ−1(yt − h(ft)Wyt −Xtβ)
)
.

Is is easy to verify that for λ → ∞ we obtain w̃t → 1. The score expression in (12) in that case

collapses to the one in (11). The weight w̃t is small if the residuals yt − h(ft)Wyt − Xtβ are

‘large’ in a multivariate sense. The implication of a small weight w̃t is that the observation has a

smaller impact on the updates of ft. This provides a robustness feature to the dynamics of ft if we

assume a fat-tailed distribution such as the Student’s t; see also the discussion in Creal et al. (2011,

2013) and Harvey (2013). The intuition is straightforward: a large residual may be attributable
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to the fat-tailedness of the Student’s t distribution rather than to a recent increase in the spatial

correlation parameter ρt = h(ft).

The score expressions in (11) and (12) also depart from the expressions for the standard linear

regression model. In particular, the additional correction term −tr(Z(ft)W ) accounts for the

simultaneity bias in the standard least squares estimator and follows from the presence of the

term log |Z(ft)
−1| in the likelihood at time t. Economically, this term accounts for the fact that

there may be feedback effects from unit i to unit j and then back to unit i. Hence the spatial

autoregressive score model integrates time-varying direct and indirect effects; both are used to

determine the appropriate transition dynamics for ρt.

2.3 Optimality of score updating in the time-varying spatial model

The score-driven framework may provide an intuitively and statistically appealing way to update

the time-varying spatial dependence parameter ρt. But possibly more importantly, the score based

updates have also optimal properties in an information theoretic sense under very mild regularity

conditions. This was proven in a generic setting by Blasques et al. (2015). To understand the

issue for our particular time-varying spatial dependence model, we repeat the main argument of

Blasques et al. (2015) for our specific setting.

Let pt := p( · |Xt) denote the true unknown conditional density of yt. Similarly, let p̃t :=

p̃( · |f̃t, Xt) denote the conditional density implied by the score model given the filtered time-

varying parameter f̃t, the regressors Xt, the postulated innovation density pe, and the static pa-

rameter vector θ. Ideally, whenever a new observation yt becomes available, we want the filtered

value f̃t+1 to be such that the new conditional density implied by the model p̃t+1 := p̃(·|f̃t+1, Xt)

is as close as possible to the true unknown conditional density pt from which yt was drawn.

Following Blasques et al. (2015), we focus on the notion of Kullback-Leibler divergence to

measure the distance between the two densities

DKL

(
pt , p̃t+1

)
=

∫
Y
p(y|Xt) log

p(y|Xt)

p̃(y|f̃t+1, Xt;θ)
dy, (13)

where Y ⊆ R is the set over which the divergence is evaluated locally. In particular, we would

like an update f̃t+1 for which the divergence DKL(p( · |ft, Xt) , p̃( · |f̃t+1, Xt)) is smaller than

the previous divergence DKL(p( · |ft, Xt) , p̃( · |f̃t, Xt)), implying that the update from f̃t to f̃t+1
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reduces the Kullback-Leibler divergence to the true unknown conditional density.

We can show that only score updates are special in the following sense.

PROPOSITION 2.1 (Proposition 2 in Blasques et al. (2015)). A smooth observation-driven update

from f̃t to f̃t+1 is optimal in the sense of DKL(pt, p̃t+1) < DKL(pt, p̃t) for every (yt, f̃t, f̃t) if and

only if the update is score equivalent.

It follows that only score (equivalent) updates have the property that they always locally reduce

the Kullback-Leibler divergence and thus provide a local improvement to the statistical model

given the data. In particular, the spatial model structure and Student’s t specification in Section 2.2

are sufficiently smooth for all local optimality results to apply. Moreover, the score-driven time-

varying spatial correlation model is sufficiently regular to also obtain non-local regions where the

score steps ensure Kullback-Leibler improvements. We refer to Blasques et al. (2015) for more

details, optimality results, and proofs.

2.4 Statistical properties of the model

In this section, we establish the existence, strong consistency and asymptotic normality of the

MLE of the static parameters θ that define the stochastic properties of the spatial score model

from Section 2. The results for this specific model hold in a much more general context, and we

use this more general framework for the formal proves in the web appendix to this paper. In fact,

we extend the results in Blasques et al. (2014) to allow for the presence of exogenous regressors.

The observation-driven structure of the time-varying spatial Durbin model allows us to per-

form maximum likelihood (ML) estimation in a straightforward way. Following equation (10), we

define the ML estimator (MLE) of the static parameter vector θ as an element of the arg max set

of the sample log likelihood function LT (θ, f̄1),

θ̂T (f̄1) ∈ arg max
θ∈Θ
LT (θ, f̄1), (14)
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where

LT (θ, f̄1) =
1

T

T∑
t=1

`t(θ, f̄1)

=
1

T

T∑
t=1

log pe

(
yt − h

(
(f̃t(θ, f̄1)

)
Wyt −Xtβ ; λ

)
− log |Z

(
f̃t(θ, f̄1)

)
|.

with Z(ft) defined below (11).

It is interesting to highlight the main complications in the proof of consistency and asymptotic

normality of the MLE. Apart from the usual complications of showing the existence of the appro-

priate number of moments, a major effort in the proof is proving invertibility of the model. For the

crucial importance of proving model invertibility, see for example Wintenberger (2013). As seen

above, the likelihood function holds in terms of the data yt and the filter f̃t. For the appropriate

laws of large numbers and central limit theorems to apply, we therefore need stationarity and er-

godicity of both yt and f̃t. The former can be established by studying the properties of the model

as a data generating process at the true parameter. The latter can be established by studying the

properties of the model as a filter for f̃t for given data at arbitrary values of the parameter vector.

In particular, we prove that for stationary and ergodic data sequences {yt} the filter converges al-

most surely and pathwise for any starting value f̄1 to a stationary ergodic sequence {f̃t}. Both of

the result for yt and f̃t hinge on the contraction properties of quite different stochastic recurrence

equations. Given the non-linear structure of the model, studying the properties of these equations

is substantially more complicated than in the GARCH case. We refer to the web appendix for

more details.

We state the result for the model in (7) with Student’s t distributed innovations with λ > 0

degrees of freedom. Consider a transformation function h that is (a.s.) bounded away from minus

one and one with uniformly bounded derivatives h(i),

− 1 < ρ ≤ ρt = h(ft) ≤ ρ̄ < 1 a.s.; sup
f∈F
|h(i)(f)| <∞ , i = 1, 2. (15)

For example, to restrict the correlation to the interval (−ρ̄, ρ̄), we can take h(ft) = ρ̄ tanh(ft),

where ρ̄ can be arbitrarily close to one. We have the following result.

THEOREM 1. Consider the spatial score model with link function (15). If {yt}t∈Z and {Xt}t∈Z
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are SE with E|yt| < ∞ and E|Xt| < ∞, then there exists a compact parameter space Θ with

|B| < 1 ∀ θ ∈ Θ, such that the MLE exists (a.s.) and is strongly consistent for any initialization

f̄1 ∈ F . If E|yt|2+ε < ∞ and E|Xt|2+ε < ∞ for some ε > 0, then the MLE is asymptotically

normal with covariance matrix I(θ0)−1 where I(θ0) := −E˜̀′′
t (θ0) is the Fisher information

matrix.

Theorem 1 establishes that we can use the MLE both for estimation and inference.

3 Monte Carlo study

To study the performance of the time-varying spatial score model in filtering out different dynamic

patterns for the spatial dependence parameter, we conduct a simulation study. In this study, we

also investigate whether the MLE is well-behaved and approximately normally distributed in larger

samples as claimed in Theorem 1.

To limit the complexity of the experiment, we consider a spatial lag model without regressors.

We set the sample size to realistic values given the empirical application in Section 5. The data

generating process is

yt = Z(ft)et, et
i.i.d.∼ Student’s t(0, In; 5), (16)

where Z(ft) = (In − tanh(ft)W )−1, t = 1, ..., T and with cross-sectional dimension n = 9.

The spatial weight matrix W is specified similar to the row-normalized cross-border exposures

of the financial sectors of European countries as used in our empirical application. We simulate

250 data sets according to (16) using five processes with different dynamic patterns for the spatial

dependence parameter. These patterns are similar to the ones in Engle (2002).5

Figure 1 shows that the filtered spatial dependence parameters are able to capture the patterns

of the simulated processes quite accurately. At the low extremes of each path for ρt there is

some over-smoothing compared to the high extremes, but this is intuitively plausible: the signal

present in strongly cross-sectionally correlated data yt is much more apparent than that in weakly

correlated data.

5In particular, we consider a constant (ρt = 0.9); sine (ρt = 0.5 + 0.4 cos(2πt/200)); fast sine (ρt = 0.5 +
0.4 cos(2πt/20)); step function (ρt = 0.9− 0.5 ∗ I(t > T/2)); and ramp (ρt = mod (t/200)).
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Figure 1: Simulated true spatial dependence process (black line), median filtered parameter
(dashed red line) and 2.5% and 97.5% (green lines) quantiles of the filtered parameters. The
figures are based on 250 replications.
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In our second simulation study, we again use n = 9 cross-sectional units. We assume that

the disturbances are normally distributed with common variance σ2, and we include one regressor

variable Xt ∼ N(0, I9). The data-generating process is the Gaussian spatial score model laid out

in Section 2. In contrast to our previous experiment, the model is now correctly specified. We

simulate 500 paths yt using the parameters ω = 0.05, A = 0.05, B = 0.8, β = 1.5, and σ2 = 2.

We plot the kernel density estimates of the distribution of the MLE for three different sample sizes,

T = { 500, 1000, 2000}, in Figure 2.
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Figure 2: Kernel density estimates of estimated parameters from 500 simulations for 3 sample
sizes (T = 500, 1000, 2000), vertical lines indicating the true parameter value
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The figure clearly shows that for smaller sample sizes of around T = 500, the estimators are

still not perfectly normal. For larger sample sizes, however, we see a clear convergence to the

limiting result. In particular, for empirically relevant sample sizes of around T = 2, 000 given our

empirical application in the next section, all distributions look close to a normal centered around

the true parameter values. We therefore apply the MLE and its associated standard errors in our

empirical application below.

4 Data

In our empirical study we evaluate the evolution of perceived sovereign credit risk over a period

that includes the Eurozone sovereign debt crisis. In particular, we investigate the time-varying

features of the spatial dependence structure between the changes in sovereign credit default swap

(CDS) spreads, particularly in relation to a number of the policy responses by regulators. Our

spatial structure is directly linked to the bank sectors’ cross-exposures to other sovereigns and

financial sectors within the European Union.

4.1 Credit default spread data

Since EU countries have been affected by the crisis to different degrees, sovereign credit spreads in

Europe are strongly cross-sectionally dependent. Figure 3 shows the credit default swap spreads

from February 2, 2009, until May 12, 2014 (1375 daily observations) for the eight euro area

countries in our sample: Belgium, France, Germany, Ireland, Italy, the Netherlands, Portugal, and

Spain. As in Acharya et al. (2014), we use relative changes (log differences multiplied by 100) of

U.S. Dollar-denominated sovereign CDS spreads for each of these countries using data obtained

from Bloomberg.
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Figure 3: Credit default swap spreads of eight European sovereigns, Feb 2, 2009 – May 12, 2014.
The different countries are split in two groups.
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The time series reveal clear common patterns, particularly among the non-stressed Eurozone

countries (Germany, France, Netherlands, Belgium, and to a lesser extend Spain and Italy). At

the same time, there are temporary dissimilarities: for example, the evolution of the Ireland credit

spread appears to be roughly in line with that of the other countries before mid 2010 and after

mid 2012, but departing during the height of the European sovereign debt crisis. The combination

of commonalities with possible temporary changes in commonality warrants the use of the time-

varying spatial score model proposed in this paper.

4.2 Other explanatory variables

Our empirical model contains three regressors that capture the state of European financial markets;

see also Caporin et al. (2013). The first variable is the change in the volatility index VStoxx. The

VStoxx is measured using the implied volatility of the EuroStoxx 50 and captures changes in risk

appetite. Our second variable is the difference between the three month Euribor and the overnight

rate EONIA. This measure captures financial sector stress and the perceived counterparty credit

risk between banks. The third variable is the change in the three month Euribor as a proxy for the

monetary policy rate.

We also incorporate two country-specific regressors, namely the (log) returns of the main stock

index in each of the respective countries, and absolute changes in the interest rate spreads between

government bonds with one year and ten year maturities. We list the local stock indices in Table

1. Local stock market returns are a measure of the well-being of the local economy and in this

way an indirect measure of the ability of governments to pay off debt in the long run through tax

collection. We expect a negative relation with credit spread changes. The term spreads reflect the

difference between long-term and short-term borrowing costs of governments, and we expect a

positive relation with sovereign credit default swap spreads.
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Table 1: List of country-specific stock indices included in the time-varying spatial score model as
regressor variables.

Belgium BEL 20 Price Index France CAC 40 Price Index
Germany DAX 30 Price Index Ireland ISEQ 20 Price Index
Italy FTSE MIB Price Index Netherlands AEX Price Index
Portugal PSI 20 Price Index Spain IBEX 35 Price Index
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All variables are included in the model with a lag of one period. The data are obtained from

Datastream, except for the short-term government bond yields for France, Germany, Ireland, Italy,

and Portugal, which are obtained from Bloomberg. Augmented Dickey-Fuller unit root test statis-

tics indicate that all time series are stationary. Table 2 presents the summary statistics.
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Table 2: Data summary. Stock index log returns are calculated from closing prices. All stock
indices are quoted in domestic currency (Euro).

mean min. 25% quant. median 75% quant. max.
CDS spread changes (log changes*100)

Belgium -0.08 -19.34 -1.9 -0.07 1.78 17.04
France -0.03 -19.44 -1.84 -0.07 1.56 19.82
Germany -0.07 -26.71 -1.89 0 1.56 25.43
Ireland -0.11 -32.69 -1.57 -0.03 1.32 26.81
Italy -0.03 -43.73 -2.09 -0.1 1.76 20.27
Netherlands -0.09 -22.2 -1.66 -0.03 1.39 14.92
Portugal 0.02 -47.38 -1.8 0 1.66 20.54
Spain -0.04 -37.04 -2.02 0 1.99 25.17

local stock index returns (log returns*100)
Belgium 0.04 -5.49 -0.59 0.03 0.69 8.96
France 0.03 -5.63 -0.68 0.02 0.80 9.22
Germany 0.06 -5.99 -0.57 0.07 0.75 5.90
Ireland 0.06 -6.79 -0.62 0.02 0.83 6.95
Italy 0.01 -7.04 -0.88 0.04 1.03 10.68
Netherlands 0.04 -5.34 -0.58 0.04 0.71 7.07
Portugal 0.01 -5.51 -0.69 0.02 0.77 10.20
Spain 0.02 -6.87 -0.82 0.01 0.87 13.48

local term spreads (changes)
Belgium 0 -1.15 -0.03 0 0.03 0.45
France 0 -0.18 -0.02 0 0.02 0.2
Germany 0 -0.17 -0.02 0 0.02 0.24
Ireland 0 -3.89 -0.04 0 0.05 3.76
Italy 0 -1.55 -0.03 0 0.03 1.23
Netherlands 0 -1.02 -0.03 0 0.02 1.1
Portugal 0 -3.94 -0.07 0 0.06 12.79
Spain 0 -1.17 -0.04 0 0.05 1.01

Eurozone-wide variables
VStoxx change -0.02 -10.94 -0.86 -0.11 0.67 12.79
term spread 0.35 -0.37 0.14 0.34 0.52 1
Euribor change -0.13 -9.2 -0.3 0 0.1 6.4
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4.3 Spatial weights matrix

The choice of the spatial weights matrix is a key ingredient of the spatial model, as it determines

the structure of the ‘economic distance’ between the sovereign CDS spread changes and defines

the channel for cross-sectional spillovers. Recently, domestic banks’ cross-border exposures have

been identified as relevant pricing factors for sovereign credit spreads, see for example Kallestrup

et al. (2016), Korte and Steffen (2015), and Beetsma et al. (2012). A possible reason for this

connection is outlined in Korte and Steffen (2015). They argue that until recently, risk management

rules for banks implied a so-called ‘zero risk weight channel’: European banks were not required

to hold capital buffers against EU member states’ debt. This led to regulatory arbitrage incentives

for banks to hold more government debt; see also Acharya and Steffen (2015). At the same time

and due to the banks’ willingness to take on government debt, governments were able to issue

large amounts of debt, thus creating a potentially problematic feedback loop: if sovereign credit

risk materialized, banks could become stressed, and due to possible bail-outs, governments in turn

might become stressed as well.

To account for this type of possible feedback loop, we use a weight matrix that is constructed

from cross-border debt data provided by the Bank for International Settlements (BIS).6 The data

are published on a quarterly basis. Therefore, our weights matrix is updated quarterly as in Denbee

et al. (2014). To avoid endogeneity and to account for the time gap in data availability, we lag the

matrices by two quarters. For all quarters the raw exposure matrix, which we denote by Wraw,

is row-normalized to form proper weights that sum up to one. In her spatial model for banking

sector interconnections, Tonzer (2015) uses a similar data set, and averages the entries in Wraw

over her sample period. Another alternative would be to normalize the exposure data by the GDP

of the country. We investigate this and other alternatives for constructing the weight matrix in our

robustness checks in Section 5.2.
6The data can be found at http://www.bis.org/statistics/consstats.htm, Table 9B: International bank claims, consoli-

dated - immediate borrower basis. Last accessed on March 20, 2014.
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5 Results

5.1 Main results

Table 3 contains the estimation results for both the static spatial lag model and the time-varying

spatial score model for normally and Student’s t-distributed disturbances. For the benchmark

models, we have a common, time-invariant variance. We relax this assumption in Section 5.2.

For the static model, we find strong evidence for spatial dependence, indicated by the high

estimate and small standard error for ρ. Given that CDS spread changes are fat-tailed, it is not

surprising to find that the model fit improves substantially for the Student’s t vis-à-vis the nor-

mal distribution. The likelihood value increases by more than 1800 points upon adding a single

parameter to the model, thus decreasing the AICc.
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Table 3: Estimated parameters and their robust (sandwich) standard errors in parentheses, for the
static Spatial Durbin Model and the time-varying spatial model, based on normally (N ) and Stu-
dent’s t (tλ) distributed disturbances. The maximized log-likelihood value (logL) and the Akaike
information criterion, corrected for finite numbers of observations, (AICc) are also reported. Esti-
mation period is February 2, 2009 – May 12, 2014.

Static model Time-varying model
N tλ N tλ

ρ 0.6979 0.6888
(0.0083) (0.0071)

ω 0.0106 0.0126
(0.0057) (0.0177)

A 0.0108 0.0139
(0.0024) (0.0093)

B 0.9867 0.9848
(0.0073) (0.0215)

log(σ2) 1.8636 0.8708 1.8519 0.8701
(0.0512) (0.0455) (0.0506) (0.0456)

VStoxx -0.1193 -0.0403 -0.0946 -0.0389
(0.0589) (0.0203) (0.0398) (0.0195)

term spread 0.1373 0.0985 0.2008 0.1459
(0.1228) (0.0754) (0.1138) (0.0735)

Euribor change 0.1119 0.066 0.0886 0.062
(0.0404) (0.0305) (0.0343) (0.0258)

local stocks -0.1985 -0.1038 -0.1884 -0.1047
(0.0479) (0.028) (0.0471) (0.0277)

local term spread 0.2244 0.1288 0.2353 0.1337
(0.1138) (0.0796) (0.1149) (0.0809)

w.local stocks -0.0668 -0.0468 -0.0376 -0.0407
(0.0582) (0.0333) (0.0514) (0.0318)

w.local term spread 0.3517 0.3484 0.3705 0.3906
(0.3462) (0.2556) (0.3286) (0.2641)

const -0.0447 -0.0542 -0.0934 -0.0778
(0.044) (0.0245) (0.0451) (0.0279)

λ0 2.4708 2.512
(0.1229) (0.1266)

logLik -26632.2 -24780.9 -26464.9 -24692.2
AICc 53284.7 49584.2 52954.1 49410.7
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The dynamic spatial score model based on the normal distribution increases the likelihood

by almost 170 points compared to the static Gaussian model at the cost of adding two model

parameters. The dynamics of the spatial dependence parameter are highly persistent with a value

of B close to unity. The unconditional mean of ft equals ω/(1−B) ≈ 0.797 with tanh(0.797) ≈

0.6624. Accounting for the fact that the expected value of tanh(ft) is slightly larger than this due

to Jensen’s inequality, we see that the unconditional level for the Gaussian spatial score model

is close to the static estimate of 0.6979. Similarly, the dynamic Student’s t model increases the

likelihood by approximately 88 points compared to its static counterpart. The unconditional level

of tanh(ft) again lies close to its static estimate.

On the basis of the reported AICc values, the data clearly favors time variation in the spatial

dependence parameter ρt using the Student’s t distribution for both the disturbance et and the tran-

sition dynamics of ρt. The estimated degrees of freedom parameter λ for the Student’s t models

is around 2.5. Hence there is a substantial degree of fat-tailedness. A part of the unconditional

fat-tailedness may also be due to the presence of volatility clustering. We discuss these robustness

issues in more detail in Section 5.2.

The coefficients for the included regressors have the same signs throughout the four model

specifications. Although the regression estimates vary somewhat, particularly between the nor-

mal and Student’s t based models, the overall picture remains the same. A higher implied stock

volatility (VStoxx) correlates with lower CDS spreads. This is consistent with the phenomenon of

‘flight to quality’ from stocks to bonds when the price of risk increases in stock markets. A higher

term spread on the interbank credit market implies a higher tendency to borrow overnight. This

is correlated with higher CDS spread changes and may be a sign of a perceived bank-sovereign

feedback loop: problems in the functioning of the interbank lending market may induce a fear

of possible future bailouts and subsequent sovereign debt problems. An increase in the Euribor,

which is a measure of the monetary policy rate, may signal that it becomes more costly for banks

to obtain liquidity from the central bank, which may induce refinancing problems and impair the

functioning of the financial sector. As expected, local stock market upturns have a dampening ef-

fect on sovereign credit spreads. The same is true, though to a lesser extent, for neighboring stock

markets. Increases in local and neighboring term spreads point to relatively higher borrowing

costs for government bonds with longer maturities compared to government bonds with shorter

maturities, and have a positive relation with sovereign CDS spread changes.
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Figure 4 presents the evolution of the filtered spatial dependence parameter. We observe that

the path of the spatial dependence coefficient corresponding to the Student’s t spatial score model

is more robust to outliers than its normal counterpart. This phenomenon is a common finding

in the volatility literature; see for example Creal et al. (2013) and Harvey (2013). Comparing

the score expressions in equations (11) and (12), it is clear that the time-varying spatial score

model shares this feature. While the normal score is unbounded in the dependent variable and the

regressors, the Student’s t score contains a compensating effect in the denominator that leads to

a down-weighting of large positive or negative observations; see the factor w̃t in (12). This leads

to a different pattern between the two filtered spatial dependence series for the two distributions,

particularly during mid 2010, the first half of 2012, and late 2013.
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Figure 4: Filtered spatial dependence parameters obtained by imposing normally (dashed line) and
Student’s t (solid line) distributed disturbances.
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Throughout the sample period, systemic risk as captured by the spatial dependence coefficient

is high, fluctuating around a value of 0.75 until the end of 2012. At that time, the level starts

to decline towards a lower level of around 0.5 to 0.6. Using the Forbes and Rigobon (2002)

terminology, only from 2013 onwards markets perceive contagion concerns to be mitigated as the

propagation strength (measured by ρt) falls. The pattern can be related to a number of important

policy events during the European sovereign debt crisis, in particular a number of non-standard

monetary operations by the ECB.7 Some events have a high visible impact. For example, the first

Long Term Refinancing Operation (LTRO) at the end of 2012 causes a sudden and sharp drop in

the spatial dependence parameter. The effect, however, is short-lived and the value of ρt bounces

back soon after to similar levels as before. The second LTRO hardly has any visible effect on

the spatial dependence parameter. It is not until Mario Draghi’s speech at the Global Investment

Conference in London in July 20128 and the subsequent announcements and implementation of

the Outright Monetary Transactions (OMT) and the European Stability Mechanism (ESM) in the

months thereafter, that the contagion concerns appear to break down with ρt decreasing more

permanently to a lower level.

5.2 Extensions

In this section, we extend the time-varying spatial score model in different directions. First, we

allow for sovereign-specific volatility clustering. Second, we let the parameters corresponding to

the regressors vary over time.

Unobserved time-varying volatility factors

Given the patterns in the data, it is clearly unrealistic to assume a common, time-invariant variance

for all sovereign CDS spread changes. We therefore extend the baseline model by adding a time-

varying diagonal covariance matrix Σt for the disturbances in the spatial model,

yt = h(ft)Wyt +Xtβ + et et ∼ pe(0,Σt), with (17)

Σt := Σ(fσt ) = diag
(
σ2

1(fσ1,t), . . . , σ
2
n(fσn,t)

)
= diag

(
exp(fσ1,t), ..., exp(fσn,t)

)
, (18)

7A list of events can be found in Figure ?? in the supplemental appendix. See also Table ?? with a list of sources.
8Quote: “Within our mandate, the ECB is ready to do whatever it takes to preserve the euro. And believe me, it will

be enough.” Source: see web appendix, Table ??.
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where fσt = (fσ1,t, ..., f
σ
n,t)
′ is a vector of sovereign-specific variance factors. As before, we endow

the factors fσj,t with score updating dynamics. To enforce parsimony, we allow for sovereign-

specific intercepts in the score updating equations for fσt , but impose common score sensitivity

and persistence parameters Aσ and Bσ, so fσj,t+1 = ωσj + Aσ sσj,t + Bσ fσj,t; see Appendix A

for further details. Although the covariance matrix of the disturbance vector Σt is diagonal, the

reduced form covariance matrix of yt is still a full (time-varying) matrix

Cov(yt) = Z(ft)ΣtZ(ft)
′. (19)

Time-varying coefficients

It is easy to also accommodate time-variation in a subset or all of the coefficients corresponding

to the regressors Xt in our model. The model becomes

yt = h(ft)Wyt +Xt1θt +Xt2β + et et ∼ tλ0(0,Σt). (20)

Here, Xt1 may contain parts of At and/or (WAt) (see equation (1)). The score dynamics for θt

are easy to derive. As our interest is in studying the potential time-variation in spillovers between

financial markets in the Eurozone, we consider the special case of Xt1 being the spatial lags of

our two individual-specific regressors, local stock market returns, and the changes in local term

spreads.

Unobserved time-varying mean factor

To distinguish commonalities from spatial spillovers, we also extend the model with an additional

unobserved time-varying mean factor. This factor is independent of the spatial lag structure,

yt = h(ft)Wyt +Xtβ + Z(ft)
−1λfλt + et, et ∼ tλ0(0,Σt) (21)

where λ0 is the degrees of freedom parameter of the Student’s t distribution, λ = (λ1, . . . , λn)′ is

an (n×1)-vector of factor loadings, and fλt ∈ R is an additional time-varying parameter endowed

with score updating. Explicit formulas for the dynamics are given in Appendix A. Rewriting
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equation (21) in reduced form, we obtain

yt = λfλt + Z(ft)Xtβ + Z(ft)et, (22)

which allows for a direct comparison with the benchmark model without spatial lag structure,

yt = Xtβ + λfλt + et. (23)

Goodness of fit comparison

Table 4 compares the goodness of fit of the eight empirical model specifications we consider in

our analysis. Almost each extension improves the performance of the model. The exception is

the model that allows for time-variation in the coefficients corresponding to the spatially lagged

regressors θ. The model without any spatial structure performs worst, despite featuring an un-

observed time-varying mean and time-varying volatilities. We therefore conclude that explicitly

accounting for dynamic contemporaneous spillovers of shocks, as is done by the time-varying spa-

tial score model, is an important feature when analyzing the dynamics of sovereign credit spread

data.
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Table 4: Goodness of fit comparison of all empirical specifications considered. The largest log-
likelihood value (logL) and smallest Akaike Information Criterion (AICc) are bolded.

Static spatial Time-varying spatial

et ∼ N(0, σ2In) tλ(0, σ2In) N(0, σ2In) tλ(0, σ2In)

logL -26632.25 -24781.00 -26464.94 -24692.20
AICc 53284.66 49584.19 52954.12 49410.66

Time-varying spatial-t Benchmark-t

(+tv. volas) (+tv.θ+tv.volas) (+mean f.+tv.volas) (+mean f.+tv.volas)

logL -24365.43 -24364.06 -24343.39 -26934.08
AICc 48775.61 48781.16 48754.46 53927.45
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The parameter estimates from the model with spatial score updating and score-driven, time-

varying variances is given in Table 5. In contrast to the spatial factor, the variance factors are less

persistent, which is seen by the value of Bσ. This is off-set by a larger impact of the scores in the

transition equation; see the value of Aσ.9

9In case of the model with unobserved mean factor, none of the parameters λi, i = 1, . . . , n, corresponding to
the mean factor are individually significantly different from zero. Jointly, these parameters slightly improve the model
fit, as is indicated by the AICc in Table 4. Also, the loading estimates have an economic interpretation: the non-
stressed Eurozone countries have a negative coefficient λi, while the most stressed countries during part of the European
sovereign debt crisis (Portugal, Ireland, Spain) have positive loadings.
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Table 5: Estimated parameters and their numerically approximated (sandwich-)standard er-
rors in parentheses, for the full model featuring spatial score updating, time-varying sovereign-
specific variances, an unobserved mean factor, and t-distributed disturbances. The maximized
log-likelihood value (logL) and the Akaike information criterion (AICc) are also reported. Esti-
mation period is February 2, 2009 - May 12, 2014.

const. -0.081 ωσ1 Belgium 0.0457 ω 0.0241
(0.0244) (0.0133) (0.0188)

VStoxx -0.0345 ωσ2 France 0.0473 A 0.0163
(0.0198) (0.015) (0.0064)

term spread 0.14 ωσ3 Germany 0.0582 Aσ 0.189
(0.0677) (0.0159) (0.0233)

Euribor 0.0664 ωσ4 Ireland 0.0354 B 0.9697
(0.0253) (0.0115) (0.0237)

stocks -0.0917 ωσ5 Italy 0.0651 Bσ 0.9437
(0.0262) (0.0178) (0.0147)

loc. term sp. 0.1969 ωσ6 Netherlands 0.0447 λ0 3.004
(0.094) (0.0136) (0.1849)

w.stocks -0.0354 ωσ7 Portugal 0.0562
(0.0303) (0.0165)

w.loc. term sp. 0.4309 ωσ8 Spain 0.065 logLik -24365.4
(0.2605) (0.0175) AICc 48775.6
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With respect to the dynamic spatial dependence, the qualitative implications of all models with

t-errors are very similar. This is shown in Figure 5. Omitting the additional variance and mean

dynamics leads to a slight upward adjustment in the filtered spatial dependence parameter, but the

overall pattern does not change.
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Figure 5: Filtered spatial dependence parameters obtained from the basic time-varying spatial
score model with t-distributed disturbances (solid) as well as with sovereign-specific, dynamic
variances and an unobserved mean factor (dashed).
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Results from standard residual diagnostic tests are given in Table 6. The model with dynamic

spatial dependence and time-varying variances substantially reduces auto-correlations and ARCH

effects for most individual series. Furthermore, cross-correlations are, on average, much lower for

the model residuals than for the raw data. The full correlation matrices are provided in the web

appendix. The web appendix also contains further robustness results using absolute instead of

relative CDS spread changes as a dependent variable. Apart from an overall lower level of spatial

dependence and a more clearly visible impact of the financial crisis at the beginning of the sample,

the pattern for the spatial dependence parameter is similar to that obtained using log changes.
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Table 6: Diagnostic tests for the residuals of the full model featuring a spatial updating factor
and volatilities, all driven by dynamic score updating, compared to the raw CDS spread changes.
LB refers to the Ljung-Box test for residual serial correlation, ARCH LM refers to the test for
remaining auto-correlation in the squared residuals. The right-hand panel contains averages of
pairwise cross-correlations.

sovereign LB test stat. ARCH LM test stat. average cross-corr.
raw residuals raw residuals raw residuals

Belgium 108.64 19.82 169.91 25.32 0.70 0.10
France 49.48 25.70 160.44 39.14 0.66 0.00
Germany 62.61 19.67 142.70 61.77 0.63 -0.10
Ireland 129.89 38.13 302.23 89.51 0.64 -0.02
Italy 99.02 40.71 102.13 117.98 0.71 0.09
Netherlands 55.69 46.50 124.41 19.66 0.64 -0.01
Portugal 167.91 52.30 189.35 52.25 0.65 0.08
Spain 105.81 39.12 253.68 131.42 0.69 0.08
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5.3 Comparison with other models

In this section, we investigate the robustness of our empirical results. We compare the outcomes

of our score-driven Spatial Durbin Model (SDM) with the outcomes of alternative spatial models

as well as the DCC model of Engle (2002). Furthermore, to check the sensitivity of the results

with respect to the spatial weights matrix, we re-estimate the dynamic SDM for several alternative

choices for Wt.

Alternative dynamic spatial specifications

The static Spatial Durbin Model (1) nests the Spatial Lag Model (SLM) and the Spatial Error

Model (SEM), which are both frequently used in the literature. In this section, we compare the

performance of dynamic versions of these models with our benchmark model, in order to obtain

the most parsimonious spatial model for our data. The dynamic SLM is defined as

yt = ρtWyt + β11n +Atβ2 + et, et ∼ tλ0(0,Σt)

where the model components are defined as in equation (1) except that, as before, ρt = h(ft). The

SLM is therefore a restricted version of the SDM with β3 = 0. The dynamic SEM is defined as

yt = γ11n +Atγ2 + ut, ut = δtWut + et, et ∼ tλ0(0,Σt). (24)

with δt = h(f δt ). The dynamics for the score-driven SLM model are identical to the dynamics

of the score-driven SDM, with β3 = 0. We give explicit formulas for the dynamics of the score-

driven SEM in Appendix A. We compare the fits of the three models in Table 7. The difference

between the fits of SLM and SDM is very small, which is not surprising given the individual

insignificance of the two spatially lagged regressors in Table 5. However, the AICc still is slightly

smaller for the SDM. The SEM performs worse than the other two candidates, suggesting that its

implied parameter restrictions are not supported by the data. We conclude that the dynamic SDM

is the most adequate dynamic spatial model to describe our data, closely followed by the SLM.
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Table 7: Comparison of likelihood values and AICc for three dynamic spatial model specifications:
the Spatial Durbin Model, the Spatial Lag Model and the Spatial Error Model.

SDM SEM SLM
logL -24365.43 -24404.44 -24368.07
AICc 48775.61 48849.50 48776.76
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Dynamic conditional correlation model

The Dynamic Conditional Correlation (DCC) model of Engle (2002) and Engle and Sheppard

(2001) is a widely used parsimonious model for the time evolution of the correlations of a panel

of time series. In contrast to our score-driven spatial model, it does not produce a time-varying

scalar measure of spillover strength, but instead a matrix of conditional correlations at each time

point t (for details, see Engle (2002)). In fact, Forbes and Rigobon (2002) clearly argue that the

use of pairwise conditional correlations may overstate contagion effects by picking up increased

spillover where there is none. Following their argument, the spatial correlation parameter is a

more structural parameter and better suited to pick up whether spillover strength has changed over

time.

To check whether our model’s implications are similar to the implications of a DCC model,

we compare the cross-sectional averages of the time-varying correlation matrix derived from our

model (the standardized version of the covariance matrix given in (19)) with the corresponding

cross-sectional averages of the DCC correlation matrices. Figure 6 shows a plot of the two av-

erages over time. The mean correlation implied by the spatial model resemble the plots of ρt in

Figure 5, but the two are not identical.

Both the average correlations from the spatial model and the DCC model are qualitatively sim-

ilar, but the spatial model seems to be more responsive to shocks. The DCC-correlations evolve

gradually and appear too smooth: they show no immediate reaction to major policy events, such

as for instance the first Long Term Refinancing Operation (LTRO) in December 2011. This was

a nonstandard monetary policy measure carried out by the ECB to provide banks with liquidity

(see also Table ?? and Figure ?? in the Supplemental Appendix). The policy resulted in a tempo-

rary break in perceived contagion as picked up by ρt and the implied pairwise correlations from

the spatial model. No effect is seen, however, for the pairwise average DCC correlations. Fur-

thermore, the decline of the perceived spillovers in CDS spreads after the implementation of the

European Stability Mechanism (ESM) and the Outright Monetary Transactions (OMT) program

in the second half of 2012 is more pronounced in the time series of correlations implied by the

spatial model. We concluding that both models are able to capture salient features of the data, but

following Forbes and Rigobon (2002) we prefer the time-varying spatial dependence parameter

as a measure of systemic (contagion) risk. By its construction as a scalar measure it summarizes
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perceived spillover tendencies, and has a structural interpretation due to its ability to incorporate

shocks from the regressors; see also equation (6).
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Figure 6: Averages of correlation matrix entries (excluding main diagonals) implied by the score-
driven SDM with time-varying volatilities (dashed red) and the DCC model (solid blue).
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Alternative spatial weights matrices

So far, all results reported were obtained using the spatial weights matrix Wraw described in

Section 4.3. As a final robustness check, we re-estimate the model using different choices for W :

a matrix containing the raw exposure data at the beginning of the sample, i.e. a matrix that is

not updated quarterly (Wconst), a binary matrix indicating the geographical neighborhood of the

countries in our sample (Wgeo), and a (time-varying) weights matrix in which we weight the raw

exposures of the financial markets by the countries’ respective quarterly GDP10. As the different

models all have the same number of parameters, we can simply compare the likelihood values at

the optimum.

Table 8 shows that the goodness of fit is quite different between the different specifications.

The model with a time-varying raw weights matrix provides the best fit. Despite the differences

in fit, however, the parameter estimates and the dynamics of the spatial dependence parameter

are robust towards the specification of W , and none of the qualitative implications of our model

change.

10source: OECD statistics
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Table 8: Comparison of likelihood values for the time-varying spatial score model with Student’s
t disturbances using different spatial weights matrices.

Wraw Wconst Wgdp Wgeo

logL -24692.2 -24776.95 -24865.78 -25586.64
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It is particularly interesting to see that the weight matrices based on economic distances as

measured through financial cross-exposures (Wraw, Wconst, and Wgdp) provide a much better fit

than a matrix based on geographic distances (Wgeo). However, as mentioned before, scaling the

exposures by the size of the economy (as measured by GDP) does not provide an improvement in

terms of model fit.

Spatial correlation as a dynamic latent variable

To enable comparisons of the estimates from our spatial score-driven model with the estimates

from a complete, parameter-driven specification of the model, we also implement a state-space

version of the spatial model with normally distributed disturbances. In particular, the time-varying

spatial correlation parameter ft for the state-space version of the model is specified as a dynamic

latent variable via the stochastic equation

ft+1 = ω +Bft + ηt+1, ηt
i.i.d.∼ N(0, σ2

η),

which is the state equation of the state-space model. The observation equation (7) remains the

same in the state-space model. We estimate the parameters of this model and extract the time-

varying correlation parameter ft using the numerically accelerated importance sampling (NAIS)

method of Koopman et al. (2015). The combination of the complexities in our empirical data

set and the highly non-linear impact of the dynamic parameter ft on the likelihood function of

the state-space model creates a challenge for parameter estimation and signal extraction. It is

outside the scope of this paper to provide a full account of the estimation process for this state-

space model, but all results are available upon request from the authors. The estimated path of

the time-varying correlation parameter ft from the state-space model is presented in Figure 7 and

we observe that the estimated path is somewhat more noisier and less persistent compared to the

estimated ft from the spatial score model. It is, however, comforting that these results leave our

main conclusion unaltered: only after late 2012 the systemic risk link appears to be broken. This

analysis provides some evidence that our key finding does not hinge on whether we adopt an

observation- or a parameter-driven approach in modelling the time-varying correlation parameter.
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Figure 7: The estimated spatial dependence parameter from the state-space model with normally
distributed disturbances.
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6 Conclusion

In this paper, we propose a new model for time-varying spatial dependence in panel data sets.

The model extends the widely used spatial lag model to a time-varying parameter framework by

endowing the spacial dependence parameter with generalized autoregressive score dynamics and

fat tails. Allowing for time-variation is particularly useful if we apply spatial models over longer

time periods, where we can no longer be sure that the spatial dependence parameter is constant.

The fat-tailed feature of our model is useful in a setting where we apply the model to financial

data, which typically exhibit fatter tails than the normal.

We established the theoretical properties of our new model: the dynamics of the model are

optimal in the sense that with each update step they locally reduce the Kullback-Leibler distance

of the statistical model to the true unknown conditional density. Moreover, we established con-

ditions for model invertibility and for consistency and asymptotically normality of the maximum

likelihood estimator in this model.

In our empirical study based on our time-varying spatial score model, we showed that Euro-

pean sovereign CDS spread changes exhibit a strong, time-varying degree of spatial dependence.

Cross-border debt linkages appear as a suitable transmission channel for the spatial spillovers.

In our final model, we incorporated a time-varying common mean factor as well as time-varying

volatilities into the specification. Using the filtered time-varying parameters of this final model,

we found evidence for a break in spatial dependence (contagion) towards the end of 2012, i.e.,

after the implementation of the outright monetary transactions (OMT) by the ECB. Earlier non-

standard monetary policies by the ECB, such as the long term refinancing operations (LTROs) only

resulted in temporary, short-lived breaks in perceived contagion in the technical sense of Forbes

and Rigobon (2002). This illustrates that policies by regulators have at least been partly effective

in breaking perceived contagion concerns during the height of the European sovereign debt crisis,

but that such actions must be chosen with care and credibly implemented, as otherwise their effect

might still be only temporary.
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Appendix A Model extensions and alternatives

We restrict the model extensions to the case of Student’s t distributed disturbances. We obtain the

equations for the Gaussian case as a special case by letting λ0 →∞.

We assume that the vector of variance factors fσt in (18) follows an n-dimensional score process

as given by

fσt+1 = ωσ +Aσ∇σt +Bσfσt

with ω = (ωσ1 , . . . , ω
σ
n)′, and Aσ, Bσ ∈ R. We thus allow for sovereign-specific intercepts in the

variance score update, but restrict the dynamic parameters Aσ and Bσ to be common across all

countries. This results in a parsimonious, yet flexible model. The score of the spatial dependence

factor ft is given in (12), with Σ replaced by Σt. For the variance factors, the score vector is

∇σt =
∂`t
∂fσt

=
1

2


(1+λ−1n) exp(−fσ1,t)·

(
y1,t−h(ft)

∑n
j=1 w1jyj,t−x′1,tβ

)2
1+λ−1(yt−h(ft)Wyt−Xtβ)′Σ(fσt )−1(yt−h(ft)Wyt−Xtβ)

− 1

...

(1+λ−1n) exp(−fσn,t)·
(
yn,t−h(ft)

∑n
j=1 wnjyj,t−x′n,tβ

)2
1+λ−1(yt−h(ft)Wyt−Xtβ)′Σ(fσt )−1(yt−h(ft)Wyt−Xtβ)

− 1

 ,

with X ′t = (x1,t, . . . , xn,t), and xi,t ∈ Rk×1.

In the presence of an additional mean factor fλt as in (22), the score update for ft changes

from (12) to

∇t =

[
w̃t ·

(
Wyt −Wλfλt

)′
Σ−1

(
yt − h(ft)Wyt −Xtβ − Z(ft)

−1λfλt

)
− tr(Z(ft)W )

]
· ḣ(ft),

w̃t = (1+λ−1n)

1+λ−1(yt−h(ft)Wyt−Xtβ−Z(ft)−1λfλt )′Σ−1(yt−h(ft)Wyt−Xtβ−Z(ft)−1λfλt )
. (A.1)

The updating equation for fλt is given by

fλt+1 = ωλ +Aλ∇λt +Bλfλt ,

with score

∇λt = w̃t · (Z(ft)
−1λ)′Σ−1(yt − h(ft)Wyt −Xtβ − Z(ft)

−1λfλt ). (A.2)

Finally, in the benchmark model (23), the score expression equals that in (A.2) with W = 0 and

53



Z(ft) ≡ In.

The dynamic Spatial Error model is given in equation (24) and can be re-written as

yt = γ11n +Atγ2 + (In − h(f δt )W )−1et..

The factor f δt is updated according to

f δt+1 = ωδ +Aδsδt +Bδf δt .

Define

ē = (In − h(f δt )W )(yt − γ11n −Atγ2)

= yt − h(f δt )Wyt − γ11n + h(f δt )Wγ11n −Atγ2 + h(f δt )WAtγ2

The t-likelihood is

`t = log |Z(f δt )−1|+ log

(
Γ
(
λ+n

2

)
|Σ|1/2(λπ)n/2Γ

(
λ
2

))− (λ+ n

2

)
log

(
1 +

ē′tΣ
−1ēt
λ

)
.

and the score functions is

sδt =
(
w̄t · (y′t + γ11

′
n + γ′2A

′
t)W

′Σ−1ēt − tr(Z(f δt )W )
)
· ḣ(f δt ),

with

w̄t = (1 + λ−1n)/(1 + λ−1ē′tΣ
−1ēt).
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